PART I LINEAR ALGEBRAIC GROUPS

1 Basic concepts
 1.1 Linear algebraic groups and morphisms
 1.2 Examples of algebraic groups
 1.3 Connectedness
 1.4 Dimension

2 Jordan decomposition
 2.1 Decomposition of endomorphisms
 2.2 Unipotent groups

3 Commutative linear algebraic groups
 3.1 Jordan decomposition of commutative groups
 3.2 Tori, characters and cocharacters

4 Connected solvable groups
 4.1 The Lie–Kolchin theorem
 4.2 Structure of connected solvable groups

5 G-spaces and quotients
 5.1 Actions of algebraic groups
 5.2 Existence of rational representations

6 Borel subgroups
 6.1 The Borel fixed point theorem
 6.2 Properties of Borel subgroups
Contents

17 Structure of parabolic subgroups, II 140
17.1 Internal modules 140
17.2 The theorem of Borel and Tits 145

18 Maximal subgroups of classical type simple algebraic groups 149
18.1 A reduction theorem 149
18.2 Maximal subgroups of the classical algebraic groups 155

19 Maximal subgroups of exceptional type algebraic groups 166
19.1 Statement of the result 166
19.2 Indications on the proof 168

20 Exercises for Part II 172

PART III FINITE GROUPS OF LIE TYPE 179

21 Steinberg endomorphisms 181
21.1 Endomorphisms of linear algebraic groups 181
21.2 The theorem of Lang–Steinberg 184

22 Classification of finite groups of Lie type 188
22.1 Steinberg endomorphisms 188
22.2 The finite groups G^F 193

23 Weyl group, root system and root subgroups 197
23.1 The root system 197
23.2 Root subgroups 200

24 A BN-pair for G^F 203
24.1 Bruhat decomposition and the order formula 203
24.2 BN-pair, simplicity and automorphisms 209

25 Tori and Sylow subgroups 218
25.1 F-stable tori 218
25.2 Sylow subgroups 225

26 Subgroups of maximal rank 229
26.1 Parabolic subgroups and Levi subgroups 229
26.2 Semisimple conjugacy classes 232

27 Maximal subgroups of finite classical groups 236
27.1 The theorem of Liebeck and Seitz 237
27.2 The theorem of Aschbacher 240
Contents

28. **About the classes $C_1^F, \ldots, C_{\ell}^F$ and S**
28.1 Structure and maximality of groups in C_1^F
28.2 On the class S

29. **Exceptional groups of Lie type**
29.1 Maximal subgroups
29.2 Lifting result

30. **Exercises for Part III**

Appendix A Root systems
A.1 Bases and positive systems
A.2 Decomposition of root systems
A.3 The length function
A.4 Parabolic subgroups
Exercises

Appendix B Subsystems
B.1 The highest root
B.2 The affine Weyl group
B.3 Closed subsystems
B.4 Other subsystems
B.5 Bad primes and torsion primes
Exercises

Appendix C Automorphisms of root systems
Exercises

References

Index