Fundamentals of Plasticity in Geomechanics

S. Pietruszczak
McMaster University, Hamilton, Ontario, Canada
Contents

Preface ix

1 Basic concepts of the theory of plasticity 1
 1.1 Typical approximations of uniaxial response of materials 1
 1.2 The notion of generalized yield/failure criterion 3
 1.3 Generalization of the concepts of perfectly plastic and strain-hardening material 4
 1.4 Determination of plastic strain; deformation and flow theories of plasticity 9
 1.5 Review of fundamental postulates of plasticity; uniqueness of the solution 12

2 Elastic-perfectly plastic formulations 19
 2.1 General considerations 19
 2.2 Geometric representation of the failure surface 20
 2.3 Selection of stress invariants for the mathematical description 21
 2.4 Failure criteria for geomaterials 23
 2.4.1 Mohr-Coulomb failure criterion 23
 2.4.2 Drucker-Prager and other derivative criteria 26
 2.4.3 Modified criteria based on smooth approximations to Mohr-Coulomb envelope 28
 2.4.4 Non-linear approximations in meridional sections 30
 2.5 Derivation of constitutive relation 33
 2.5.1 Matrix formulation 35
 2.6 Consequences of a non-associated flow rule 37

3 Isotropic strain-hardening formulations 39
 3.1 'Triaxial' tests and their mathematical representation 39
 3.1.1 Mohr-Coulomb criterion in 'triaxial' space 40
 3.1.2 On the behaviour of a perfectly plastic Mohr-Coulomb material 42
 3.1.3 Review of typical mechanical characteristics of granular materials 44
3.2 Volumetric hardening; Critical State model 47
 3.2.1 Formulation in the ‘triaxial’ \(\{p, q\} \) space 47
 3.2.2 Comments on the performance 52
 3.2.3 Generalization and specification of the constitutive matrix 55

3.3 Deviatoric hardening model 56
 3.3.1 Formulation in the ‘triaxial’ \(\{p, q\} \) space 56
 3.3.2 Comments on the performance 59
 3.3.3 Generalization and specification of the constitutive matrix 62

3.4 Combined volumetric-deviatoric hardening 63

3.5 Specification of constitutive matrix under undrained conditions 67

4 Combined isotropic-kinematic hardening rules 69
 4.1 Bounding surface plasticity; volumetric hardening framework 69
 4.1.1 Formulation in the ‘triaxial’ \(\{p, q\} \) space 70
 4.1.2 Comments on the performance 74
 4.1.3 Generalization and specification of the constitutive matrix 76

 4.2 Bounding surface plasticity; deviatoric hardening framework 78
 4.2.1 Formulation in the ‘triaxial’ \(\{P, Q\} \) space 79
 4.2.2 Comments on the performance 83
 4.2.3 Generalization and specification of the constitutive matrix 86

5 Numerical integration of constitutive relations 91
 5.1 Euler’s integration schemes 91
 5.2 Numerical integration of \(\{p, q\} \) formulation 92
 5.2.1 Stress-controlled scheme 93
 5.2.2 Strain-controlled schemes 93
 5.3 Numerical examples of integration in \(\{p, q\} \) space 95
 5.3.1 Critical state model; drained \(p = \text{const.} \) compression 95
 5.3.2 Deviatoric hardening model; drained ‘triaxial’ compression 98
 5.3.3 Deviatoric hardening model; undrained ‘triaxial’ compression 98
 5.4 General methods for numerical integration 104
 5.4.1 Statement of algorithmic problem 105
 5.4.2 Notion of closest point projection 106
 5.4.3 Return-mapping algorithms 108

6 Introduction to limit analysis 113
 6.1 Formulation of lower and upper bound theorems 113
 6.2 Examples of applications of limit theorems in geotechnical engineering 118
7 Description of inherent anisotropy in geomaterials

7.1 Formulation of anisotropic failure criteria
 7.1.1 Specification of failure criteria based on critical plane approach
 7.1.2 Formulation of failure criteria incorporating a microstructure tensor

7.2 Description of inelastic deformation process
 7.2.1 Plasticity formulation for critical plane approach
 7.2.2 Plasticity formulation incorporating a microstructure tensor
 7.2.3 Numerical examples

8 General trends in the mechanical behaviour of soils and rocks

8.1 Basic mechanical characteristics in monotonic tests under drained conditions
 8.1.1 Influence of confining pressure; compaction/dilatancy
 8.1.2 Influence of Lode's angle and the phenomenon of strain localization

8.2 Undrained response of granular media; pore pressure evolution, liquefaction

8.3 Basic mechanical characteristics in cyclic tests; hysteresis and liquefaction

8.4 Inherent anisotropy; strength characteristics of sedimentary rocks

8.5 Identification of basic material parameters for soils/rocks
 8.5.1 General remarks on identification procedure
 8.5.2 Examples involving deviatoric hardening framework

Bibliography

Appendix: Suggested exercises