Atmospheric Chemistry

Ann M. Holloway and Richard P. Wayne
Department of Chemistry, University of Oxford, Oxford, UK

RSC Publishing
Contents

Chapter 1 Earth’s Atmosphere

1.1 Chemistry in the Atmosphere
1.2 Earth’s Atmosphere in Perspective
1.3 Aerosols, Particles and Droplets
1.4 Major Gases
1.5 Minor Gases

Chapter 2 Physics of the Atmosphere

2.1 Pressures
2.2 Mixing Ratios, Mixing, and Mean Free Paths
2.3 Temperatures
 2.3.1 Radiative Heating
 2.3.2 Radiation Trapping and the ‘Greenhouse Effect’
 2.3.3 Troposphere, Stratosphere, and Mesosphere
 2.3.4 Beyond the Mesosphere
2.4 Transport in the Atmosphere
 2.4.1 Vertical Transport
 2.4.2 Winds

Chapter 3 Sources and Sinks of Atmospheric Species

3.1 The Life Cycle of Atmospheric Gases
3.2 Sources of Atmospheric Constituents
 3.2.1 The Early Atmosphere
 3.2.2 Sources Supplying the Contemporary Atmosphere
 3.2.3 Chemistry
3.3 Sinks
 3.3.1 Chemistry
 3.3.2 Dry Deposition
 3.3.3 Wet Deposition
 3.3.4 Escape
Chapter 4 Observations and Models

4.1 Measurements of Atmospheric Composition
4.2 *In-situ* Methods
4.3 Remote Sensing
4.4 Models of Atmospheric Chemistry: Diagnosis and Prognosis
4.5 'Families' of Reactants and Intermediates
4.6 Comparison of Model Predictions with Atmospheric Observations

Chapter 5 Ozone

5.1 Ozone: Chemistry and Photochemistry
5.2 Sources of Ozone in Stratosphere and Troposphere
5.2.1 Photolysis Mechanisms
5.2.2 Chapman Functions and the Ozone Layer
5.2.3 Comparison of Measurements with Predictions
5.3 Transport from Stratosphere to Troposphere
5.4 Initiation of Atmospheric Oxidation by OH, NO3 and O3
5.5 Absorption of UV and its Relevance

Chapter 6 Cyclic Processes

6.1 Chemical and Physical Cycles
6.1.1 Cycles within Cycles
6.2 Carbon Cycle
6.3 Oxygen Cycle
6.4 Nitrogen Cycle
6.5 Sulfur Cycle

Chapter 7 Life and the Atmosphere

7.1 Atmospheres on Planets without Life
7.1.1 Water and Venus
7.1.2 Nitrogen and Mars
7.1.3 Carbonates and Nitrates
7.2 An Atmosphere on a Planet with Life: Earth
7.2.1 Water and Carbon Dioxide
7.2.2 Oxygen and Ozone
7.2.3 Hydrocarbons and Other Organic Compounds
7.2.4 Dimethyl Sulfide
Chapter 8 Chemistry in the Troposphere

8.1 Introduction
8.1.1 Boundary Layers
8.2 Oxidation and Transformation of Volatile Organic Compounds (VOCs)
8.2.1 Photochemical Chain Initiation by Hydroxyl Radicals
8.2.2 Oxidation Steps for CO and CH$_4$
8.2.3 Tropospheric Ozone Production
8.2.4 The Importance of NO$_x$
8.2.5 Alkanes and Alkenes
8.2.6 PAN
8.2.7 Oxidation of More Complex VOCs
8.3 Initiation of Oxidation by NO$_3$ and by O$_3$
8.3.1 The Nitrate Radical
8.3.2 Ozone
8.4 Sulfur Chemistry
8.4.1 Oxidation from State -2 to +4: the Steps to SO$_2$
8.4.2 Oxidation from State +4 to +6: the Steps from SO$_2$ to H$_2$SO$_4$
8.5 ‘Reactive’ Inorganic Halogens and Their Oxides
8.6 Heterogeneous Chemistry

Chapter 9 The Stratosphere

9.1 Purpose of the Chapter
9.2 Interconversion of O and O$_3$: Validity of the Odd-Oxygen Concept
9.3 Catalytic Cycles in the Gas Phase
9.3.1 Natural Sources and Sinks of Catalytic Species
9.3.2 Null Cycles, Holding Cycles, and Reservoirs
9.3.3 Summary of Homogeneous Chemistry
9.3.4 Heterogeneous Chemistry in the Stratosphere
9.4 Polar Ozone Chemistry
9.4.1 Abnormal Polar Ozone Depletion
9.4.2 Special Features of Polar Meteorology
9.4.3 Anomalous Chemical Composition
9.4.4 Polar Stratospheric Clouds
9.4.5 Perturbed Chemistry
9.5 Perturbations of the Stratosphere by Nature
9.5.1 Overview
9.5.2 The Quasi-biennial and El Niño Oscillations
9.5.3 Solar Ultraviolet Irradiance
9.5.4 Solar Proton Events
9.5.5 Volcanoes
9.6 Variations and Trends in Stratospheric Ozone
Chapter 10 Airglow, Aurora and Ions

10.1 Beyond the Stratosphere 177
10.2 Airglow 178
 10.2.1 Optical Emission from Planetary Atmospheres 178
 10.2.2 Excitation Mechanisms 179
 10.2.3 Airglow Intensities and Altitude Profiles 180
 10.2.4 Atomic and Molecular Oxygen 181
 10.2.5 Atomic Sodium 185
 10.2.6 Hydroxyl Radicals 189
10.3 Ions in the Atmosphere 191
 10.3.1 Aurora 191
 10.3.2 Geomagnetic Fluctuations 192
 10.3.3 Radio Propagation 193
10.4 Ion Chemistry 195
 10.4.1 Ionization Mechanisms 198
 10.4.2 The F-Region 199
 10.4.3 E-Region Processes 200
 10.4.4 D-Region Positive-Ion Chemistry 201
 10.4.5 D-Region Negative-Ion Chemistry 204

Chapter 11 Man's Adverse Influences on the Atmosphere

11.1 Local and Regional Air Pollution 206
 11.1.1 Clean and Polluted Air 206
 11.1.2 Effects of Pollution 208
 11.1.3 Primary and Secondary Pollutants 209
 11.1.4 Smoke and Sulfur Pollution 210
 11.1.5 Acid Rain 212
 11.1.6 Photochemical Ozone and Smog 213
 11.1.7 Polycyclic Aromatic Hydrocarbons (PAHs) 219
 11.1.8 Biomass Burning 220
11.2 Man's Impact on the Global Stratosphere 221
 11.2.1 Consequences of Ozone Perturbation 222
 11.2.2 Aircraft 224
 11.2.3 Halocarbons: Basic Chemistry 227
 11.2.4 Halocarbons: Loading and Ozone-Depletion Potentials 230
 11.2.5 Halocarbons: Control, Legislation, and Alternatives 233
 11.2.6 Halocarbons: Future Ozone Depletions 234
11.3 Polar Ozone 'Holes' 235
 11.3.1 Discovery of Abnormal Depletion 236
 11.3.2 Origin of Chlorine Compounds; Dynamics 238
 11.3.3 The Arctic Stratosphere 239
 11.3.4 Implications of the Polar Phenomena 241
11.4 The 'Greenhouse Effect', Global Warming and Climate Change 242
 11.4.1 Radiatively Active Gases and Particles in the Atmosphere 243
 11.4.2 Radiative Forcing 245
 11.4.3 Feedbacks and Models 247
 11.4.4 Projected Changes in Concentrations, Forcing, and Climate 248
 11.4.5 Aircraft 251