CONTENTS

FOREWORD vii

PREFACE ix

Part I

SESSION 1: ORBIT DETERMINATION 1

Algorithm of Automatic Detection and Analysis of Non-Evolutionary Changes in Orbital Motion of Geocentric Objects (AAS 09-103)
 Sergey Kamensky, Andrey Tuchin, Victor Stepanyants and Kyle T. Alfriend 3

Deriving Density Estimates Using CHAMP Precision Orbit Data for Periods of High Solar Activity (AAS 09-104)
 Andrew Hiatt, Craig A. McLaughlin and Travis Lechtenberg 23

Geosat Follow-on Precision Orbit Improvement through Drag Model Update (AAS 09-105)
 Stephen R. Mance, Craig A. McLaughlin, Frank G. Lemoine, David D. Rowlands, and Paul J. Cefola 43

On Preliminary Orbit Determination: A New Approach (AAS 09-106)
 Reza Raymond Karimi and Daniele Mortari 63

Comparison of Different Methods of LEO Satellite Orbit Determination for a Single Pass Through a Radar (AAS 09-107)
 Zakhary N. Khutorovsky, Sergey Yu. Kamensky, Nickolay N. Sbytov and Kyle T. Alfriend 71

Passive Multi-Target Tracking with Application to Orbit Determination for Geosynchronous Objects (AAS 09-108)
 Kyle J. DeMars and Moriba Jah 89

SESSION 2: RENDEZVOUS, RELATIVE MOTION, FORMATION FLIGHT AND SATELLITE CONSTELLATIONS 1

A Cooperative Egalitarian Peer-to-Peer Strategy for Refueling Satellites in Circular Constellations (AAS 09-109)
 Atri Dutta and Panagiotis Tsiotras 103

An Investigation of Teardrop Relative Orbits for Circular and Elliptical Chief Satellites (AAS 09-110)
 David J. Irvin Jr., Richard G. Cobb and T. Alan Lovell 121
Control System Design and Simulation of Spacecraft Formations Via Leader-Follower Approach (AAS 09-111)
Mahmut Reyhanoglu .. 141

Decentralized Optimization for Control of Satellite Imaging Formations in Complex Regimes (AAS 09-112)
Lindsay D. Millard and Kathleen C. Howell 153

Electromagnetic Flat Docking System for in-Orbit Self-Assembly of Small Spacecraft (AAS 09-113)
Samia Smail and Craig I. Underwood .. 173

Investigations of a Massive, Non-Spherical Chief in Close Proximity Formations (AAS 09-114)
Cengiz Akinli and Ryan Russell .. 185

One-Dimensional Testbed for Coulomb Controlled Spacecraft (AAS 09-115)
Carl R. Seubert and Hanspeter Schaub 205

SESSION 3:
SPACETRAFT GUIDANCE, NAVIGATION, AND CONTROL 1 223

Spacecraft Constellation Orbit Estimation Via a Novel Wireless Positioning System (AAS 09-116)
Shu Ting Goh, Ossama Abdelkhalik and Seyed A. Zekavat 225

A New Optimal Orbit Control for Two-Point Boundary-Value Problem Using Generating Functions (AAS 09-117)
Mai Bando and Hiroshi Yamakawa ... 245

Improvement of Vision-Based Estimation Using Multiple Vector Observations (AAS 09-118)
Daero Lee and Henry Pernicka .. 261

Optimal Guidance for Lunar Ascent (AAS 09-119)
David G. Hull .. 275

Desensitizing the Minimum-Fuel Powered Descent for Mars Pinpoint Landing (AAS 09-120)
Haijun Shen, Hans Seywald and Richard W. Powell 287

Finite Set Control Transcription for Optimal Control Applications (AAS 09-121)
Stuart A. Stanton and Belinda G. Marchand 307

Autonomous Optical Lunar Navigation (AAS 09-122)
Brian Crouse, Renato Zanetti, Chris D’Souza and Pol D. Spanos 327

Rigid Body Inertia Estimation with Applications to the Capture of a Tumbling Satellite (AAS 09-123)
Daniel Sheinfeld and Stephen Rock .. 343

xiv
SESSION 4:
ATTITUDE SENSING, ESTIMATION, AND CALIBRATION

Partial Disk Tracking Using Visual Snakes: Application to Spacecraft Pose Estimation (AAS 09-124)
Rajtilok Chakravarty and Hanspeter Schaub 359

Fast Access and Low Memory Star Pair Catalog for Star Identification (AAS 09-125)
David D. Needelman, James P. Alstad, Peter C. Lai and Haytham M. Elmasri 379

The K-Vector ND and its Application to Building a Non-Dimensional Star Identification Catalog (AAS 09-126)
Benjamin B Spratling IV and Danielle Mortari 397

Performance of Spin-Axis Attitude Estimation Algorithms With Real Data (AAS 09-127)
Jozef C. van der Ha ... 411

Time Tag Issues in the Star Tracker and Gyro Data for ICESat Precision Attitude Determination (AAS 09-128)
Sungkoo Bae, Randall Ricklefs, Noah Smith and Bob Schutz 431

Using Quantum Search Algorithm in Future Spacecraft Attitude Determination (AAS 09-129)
Jack Tsai, F. Y. Hsiao and Y. J. Li .. 445

Nonsingular Attitude Filtering Using Modified Rodrigues Parameters (AAS 09-130)
Christopher D. Karlgaard and Hanspeter Schaub 461

SESSION 5: IBEX SPECIAL SESSION

Mission Design for the Interstellar boundary Explorer (IBEX) Mission (AAS 09-131)
Michelle Reno, Ryan Tyler, Nathan Schwadron and Dave McComas 479

Prelaunch Trajectory Design and Analysis for the IBEX Mission (AAS 09-132)
Mike Loucks, John Carrico and Ryan Tyler 485

Prelaunch Orbit Determination Design and Analysis for the IBEX Mission (AAS 09-133)
John Carrico, Mike Loucks and Lisa Policastri 499

Trajectory Design Operations for the IBEX Mission (AAS 09-134)
Mike Loucks, John Carrico, Marco Concha and Timothy Craychee 509

Orbit Determination Operations for the Interstellar Boundary Explorer (AAS 09-135)
Lisa Policastri, John Carrico, Timothy Craychee, Tom Johnson and James Woodburn ... 525

Effect of IBEX Spinning Attitude on Doppler Observations (AAS 09-136)
James Woodburn, Tom Johnson, Vincent Coppola, John Carrico and Lisa Policastri ... 545
<table>
<thead>
<tr>
<th>SESSION 6: ORBIT DYNAMICS 1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Cubed Sphere Gravity Model for Fast Orbit Propagation (AAS 09-137)</td>
<td>565</td>
</tr>
<tr>
<td>Brandon A. Jones, George H. Born and Gregory Beylkin.</td>
<td>567</td>
</tr>
<tr>
<td>A Nonsingular Approach in Satellite Theory (AAS 09-138)</td>
<td>585</td>
</tr>
<tr>
<td>Giorgio E. O. Giacaglia and Bob E. Schutz</td>
<td>593</td>
</tr>
<tr>
<td>Analytic Construction of Periodic Orbits in the Circular Restricted Three Body Problem With Small Mass Parameter (AAS 09-139)</td>
<td>601</td>
</tr>
<tr>
<td>Mohammed Ghazy and Brett Newman</td>
<td>619</td>
</tr>
<tr>
<td>Bézier Representation of Analytical Functions (AAS 09-140)</td>
<td>621</td>
</tr>
<tr>
<td>Troy A. Henderson, Ashraf Ibrahim and Daniele Mortari</td>
<td>637</td>
</tr>
<tr>
<td>Nearly Circular Equatorial Orbits of a Satellite About an Oblate Body With Atmosphere (AAS 09-141)</td>
<td>653</td>
</tr>
<tr>
<td>Thomas Carter and Mayer Humi</td>
<td>669</td>
</tr>
<tr>
<td>PPKBZ9A,SA Two Orbit Propagators Based on an Analytical Theory (AAS 09-142)</td>
<td>685</td>
</tr>
<tr>
<td>Juan F. San-Juan</td>
<td>693</td>
</tr>
<tr>
<td>Evolution Strategies for Computing Periodic Orbits (AAS 09-143)</td>
<td>705</td>
</tr>
<tr>
<td>Alberto Abad and Antonio Elipe</td>
<td>721</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 7: LOW THRUST MISSION AND TRAJECTORY DESIGN</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Efficient Method for Computing Near-Optimal, Low-Thrust Earth-Orbit Transfers (AAS 09-145)</td>
<td>685</td>
</tr>
<tr>
<td>Craig A. Kluever</td>
<td>693</td>
</tr>
<tr>
<td>Applications of Constraint Stabilization to Low-Thrust Mission Design (AAS 09-146)</td>
<td>705</td>
</tr>
<tr>
<td>Iman Alizadeh and Benjamin Villac</td>
<td>721</td>
</tr>
<tr>
<td>Design Concept and Modeling of an Advanced Solar Photon Thruster (AAS 09-147)</td>
<td>723</td>
</tr>
<tr>
<td>Bernd Dachwald and Patrick Wurm</td>
<td>741</td>
</tr>
<tr>
<td>Design of Optimal Low-Thrust Lunar Pole-Sitter Missions (AAS 09-148)</td>
<td>741</td>
</tr>
<tr>
<td>Daniel J. Grebow, Martin T. Ozimek and Kathleen C. Howell</td>
<td>761</td>
</tr>
<tr>
<td>Low-Thrust Control of Lunar Orbits (AAS 09-150)</td>
<td>761</td>
</tr>
<tr>
<td>Nathan Harl and Henry J. Pernicka</td>
<td>781</td>
</tr>
<tr>
<td>Multiobjective Optimization of Low-Thrust Trajectories Using a Genetic Algorithm Hybrid (AAS 09-151)</td>
<td>781</td>
</tr>
<tr>
<td>Matthew A. Vavrina and Kathleen C. Howell</td>
<td>801</td>
</tr>
<tr>
<td>Trajectory to the Orbit Largely Inclined with the Ecliptic Plane by Way of Electric Propulsion Delta-V Earth Gravity Assist (AAS 09-152)</td>
<td>801</td>
</tr>
<tr>
<td>Yasuhiro Kawakatsu, Hitoshi Kuninaka and Kazutaka Nishiyama</td>
<td>819</td>
</tr>
</tbody>
</table>