Contents

Preface to the first edition
- xv

Preface to the second edition
- xvii

1 Introduction and overview
- 1
 1.1 General introduction
- 1
 1.2 Some basic facts of nuclear physics
- 6
 1.3 The local abundance distribution
- 8
 1.4 Brief outline of stellar evolution
- 12

2 Thermonuclear reactions
- 17
 2.1 General properties of nuclei
- 17
 2.2 Nuclear reaction physics
- 22
 2.3 Non-resonant reactions
- 24
 2.4 Sketch of statistical mechanics
- 28
 2.5 Thermonuclear reaction rates
- 31
 2.6 Resonant reactions
- 33
 2.7 Neutron capture reactions
- 38
 2.8 Inverse reactions
- 39
 2.9 α-decay and fission
- 39
 2.10 Weak interactions
- 41

3 Cosmic abundances of elements and isotopes
- 49
 3.1 Introduction: data sources
- 49
 3.2 Analysis of absorption lines
- 49
 3.3 Photometric methods
- 77
 3.4 Emission lines from nebulae
- 79
 3.5 Abundances: main results
- 92

4 Cosmological nucleosynthesis and abundances of light elements
- 119
 4.1 Introduction
- 119
 4.2 Background cosmology
- 121
 4.3 Thermal history of the Universe
- 124

List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>24</td>
</tr>
<tr>
<td>A</td>
<td>49</td>
</tr>
<tr>
<td>M</td>
<td>77</td>
</tr>
<tr>
<td>B</td>
<td>119</td>
</tr>
<tr>
<td>H</td>
<td>124</td>
</tr>
</tbody>
</table>
4.4 Neutron:proton ratio 127
4.5 Nuclear reactions 128
4.6 Deuterium and \(^3\)He 130
4.7 Helium 136
4.8 Lithium 7 143
4.9 Conclusions 148

5 Outline of stellar structure and evolution 152
5.1 Introduction 152
5.2 Timescales and basic equations of stellar structure 154
5.3 Homology transformation 159
5.4 Degeneracy, white dwarfs and neutron stars 161
5.5 Hayashi effect 165
5.6 Hydrogen-burning 167
5.7 Evolution from the main sequence: the Schönberg–Chandrasekhar limit 173
5.8 Helium-burning 175
5.9 Further burning stages: evolution of massive stars 177
5.10 Evolution of intermediate- and low-mass stars 185
5.11 Interacting binary stars 196

6 Neutron capture processes 206
6.1 Introduction 206
6.2 The s-process 206
6.3 The r-process 218

7 Galactic chemical evolution: basic concepts and issues 225
7.1 Introduction 225
7.2 The overall picture 226
7.3 Ingredients of GCE models 227
7.4 The GCE equations 243
7.5 Mixing processes in the interstellar medium 248

8 Some specific GCE models and related observational data 251
8.1 The ‘Simple’ (1-zone) model 251
8.2 The Simple model with instantaneous recycling 252
8.3 Some consequences of the instantaneous Simple model 253
8.4 Suggested answers to the G-dwarf problem 274
8.5 Inflow models 276
8.6 Models for the Galactic halo and disk 281

9 Origin and evolution of light elements 306
9.1 Introduction 306
9.2 Sketch of cosmic-ray physics 306
9.3 Light element production 311
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4 Galactic chemical evolution of light elements</td>
<td>313</td>
</tr>
<tr>
<td>9.5 Cosmological cosmic rays and the ^6Li plateau</td>
<td>322</td>
</tr>
<tr>
<td>10 Radioactive cosmochronology</td>
<td>327</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>327</td>
</tr>
<tr>
<td>10.2 Age-dating of rocks</td>
<td>327</td>
</tr>
<tr>
<td>10.3 Galactic cosmochronology</td>
<td>330</td>
</tr>
<tr>
<td>10.4 Short-lived radioactivities</td>
<td>340</td>
</tr>
<tr>
<td>11 Chemical evolution in other sorts of galaxies</td>
<td>345</td>
</tr>
<tr>
<td>11.1 Dwarf galaxies</td>
<td>345</td>
</tr>
<tr>
<td>11.2 Helium, carbon and nitrogen</td>
<td>351</td>
</tr>
<tr>
<td>11.3 Chemical evolution of elliptical galaxies</td>
<td>355</td>
</tr>
<tr>
<td>12 Cosmic chemical evolution and diffuse background radiation</td>
<td>374</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>374</td>
</tr>
<tr>
<td>12.2 Luminosity evolution and the diffuse background</td>
<td>375</td>
</tr>
<tr>
<td>12.3 Starbursts and metal production</td>
<td>379</td>
</tr>
<tr>
<td>12.4 Cosmic chemical evolution: observations</td>
<td>382</td>
</tr>
<tr>
<td>12.5 Cosmic chemical evolution: models</td>
<td>391</td>
</tr>
<tr>
<td>12.6 An inventory of baryons and metals in the Universe</td>
<td>395</td>
</tr>
<tr>
<td>12.7 Metals in the Universe and diffuse background radiation</td>
<td>396</td>
</tr>
<tr>
<td>Appendix 1 Some historical landmarks</td>
<td>399</td>
</tr>
<tr>
<td>Appendix 2 Some physical and astronomical constants</td>
<td>405</td>
</tr>
<tr>
<td>Appendix 3 Time-dependent perturbation theory and transition probabilities</td>
<td>407</td>
</tr>
<tr>
<td>Appendix 4 Polytropic stellar models</td>
<td>413</td>
</tr>
<tr>
<td>Appendix 5 Dissipation and abundance gradients</td>
<td>418</td>
</tr>
<tr>
<td>Appendix 6 Hints for problems</td>
<td>420</td>
</tr>
<tr>
<td>References</td>
<td>431</td>
</tr>
<tr>
<td>Index</td>
<td>453</td>
</tr>
</tbody>
</table>