Astronomical Applications of Astrometry

Ten Years of Exploitation of the Hipparcos Satellite Data

Michael Perryman

European Space Agency, Noordwijk, The Netherlands and Leiden Observatory, University of Leiden, The Netherlands
3 Double and multiple stars

3.1 Introduction
3.2 Double and multiple stars in the Hipparcos Catalogue
 3.2.1 Observational effects of multiplicity
 3.2.2 Classification of solutions
 3.2.3 Accuracy verification
3.3 Tycho Catalogue double stars
3.4 Subsequent investigations of double and multiple stars
 3.4.1 Improved solutions
 3.4.2 Single stars showing evidence for binarity: The $\Delta\mu$ binaries
 3.4.3 Statistical properties
3.5 Orbital systems
 3.5.1 General properties
 3.5.2 Individual orbital systems
3.6 Eclipsing binaries
3.7 Contact binaries: W UMa, symbiotic, and RS CVn systems
3.8 Ground-based follow-up observations
 3.8.1 Astrometry
 3.8.2 Radial velocity and spectroscopy
 3.8.3 Photometry
 3.8.4 Speckle interferometry
 3.8.5 Adaptive optics
 3.8.6 Long-baseline interferometry

4 Photometry and variability

4.1 Hipparcos and Tycho photometric data
 4.1.1 Magnitudes and photometric systems
 4.1.2 Hipparcos and Tycho photometric systems
 4.1.3 Main mission photometric reductions
 4.1.4 Tycho photometric reductions
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.5</td>
<td>Variability analysis</td>
<td>156</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Data products</td>
<td>157</td>
</tr>
<tr>
<td>4.2</td>
<td>Photometric properties and validation</td>
<td>158</td>
</tr>
<tr>
<td>4.3</td>
<td>Photometric calibration in the optical</td>
<td>161</td>
</tr>
<tr>
<td>4.4</td>
<td>Photometric calibration in the infrared</td>
<td>165</td>
</tr>
<tr>
<td>4.5</td>
<td>Photometric calibration in the ultraviolet</td>
<td>165</td>
</tr>
<tr>
<td>4.6</td>
<td>Variability</td>
<td>167</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Variability detection methods</td>
<td>167</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Tycho variables</td>
<td>170</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Contribution of amateur astronomers</td>
<td>171</td>
</tr>
<tr>
<td>4.7</td>
<td>Variability over the HR diagram</td>
<td>172</td>
</tr>
<tr>
<td>4.8</td>
<td>Main instability strip</td>
<td>173</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Cepheid variables</td>
<td>173</td>
</tr>
<tr>
<td>4.8.2</td>
<td>W Virginis variables</td>
<td>174</td>
</tr>
<tr>
<td>4.8.3</td>
<td>RR Lyrae variables</td>
<td>174</td>
</tr>
<tr>
<td>4.9</td>
<td>Pulsators on or near the main sequence</td>
<td>174</td>
</tr>
<tr>
<td>4.9.1</td>
<td>δ Scuti variables</td>
<td>175</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Rapidly-oscillating Ap (roAp) stars</td>
<td>181</td>
</tr>
<tr>
<td>4.9.3</td>
<td>γ Doradus variables</td>
<td>184</td>
</tr>
<tr>
<td>4.9.4</td>
<td>β Cephei variables</td>
<td>185</td>
</tr>
<tr>
<td>4.9.5</td>
<td>Supergiants: Pulsating O and α Cyg variables</td>
<td>186</td>
</tr>
<tr>
<td>4.9.6</td>
<td>Slowly-pulsating B stars</td>
<td>186</td>
</tr>
<tr>
<td>4.9.7</td>
<td>Maia variables</td>
<td>189</td>
</tr>
<tr>
<td>4.10</td>
<td>Red variables: Long-period, Mira, and semi-regular</td>
<td>189</td>
</tr>
<tr>
<td>4.11</td>
<td>Individual objects</td>
<td>197</td>
</tr>
<tr>
<td>5</td>
<td>Luminosity calibration and distance scale</td>
<td>207</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>207</td>
</tr>
<tr>
<td>5.2</td>
<td>Statistical biases</td>
<td>208</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Malmquist bias</td>
<td>209</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Lutz–Kelker bias</td>
<td>209</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Maximum likelihood techniques</td>
<td>211</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Astrometry-based luminosity, or reduced parallax</td>
<td>211</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Reduced proper motions</td>
<td>212</td>
</tr>
<tr>
<td>5.3</td>
<td>Secular and statistical parallaxes</td>
<td>212</td>
</tr>
<tr>
<td>5.4</td>
<td>Absolute magnitude versus spectral type</td>
<td>212</td>
</tr>
<tr>
<td>5.5</td>
<td>Luminosity indicators using spectral lines</td>
<td>219</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Wilson–Bappu effect</td>
<td>220</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Equivalent width of O I</td>
<td>222</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Interstellar lines</td>
<td>222</td>
</tr>
<tr>
<td>5.6</td>
<td>Use of standard candles</td>
<td>223</td>
</tr>
<tr>
<td>5.7</td>
<td>Population I distance indicators</td>
<td>224</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Classical Cepheids</td>
<td>224</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Red clump giants</td>
<td>230</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Mira and semi-regular variables</td>
<td>236</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Other Population I distance indicators</td>
<td>239</td>
</tr>
<tr>
<td>5.8</td>
<td>Population II distance indicators</td>
<td>239</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Subdwarf main-sequence fitting</td>
<td>239</td>
</tr>
<tr>
<td>5.8.2</td>
<td>RR Lyrae and horizontal branch stars</td>
<td>246</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Other Population II distance indicators</td>
<td>251</td>
</tr>
<tr>
<td>5.9</td>
<td>The Magellanic Clouds</td>
<td>253</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Distance to the Large Magellanic Cloud</td>
<td>253</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Dynamics of the Magellanic Clouds</td>
<td>253</td>
</tr>
<tr>
<td>5.10</td>
<td>Other galaxies</td>
<td>255</td>
</tr>
<tr>
<td>5.11</td>
<td>Supernovae</td>
<td>258</td>
</tr>
</tbody>
</table>
6 Open clusters, groups and associations

6.1 Introduction
6.2 Detection methods
 6.2.1 General considerations
 6.2.2 Convergent-point method
 6.2.3 Other search methods
6.3 The Hyades
 6.3.1 Introduction
 6.3.2 Convergent-point analyses
 6.3.3 Hipparcos results
 6.3.4 Chemical composition and theoretical models
 6.3.5 Secular parallaxes
 6.3.6 Further complications
 6.3.7 N-body analyses
 6.3.8 Summary of uncertainties
6.4 The Pleiades
 6.4.1 Introduction
 6.4.2 Hipparcos distance estimates
 6.4.3 Main-sequence fitting post-Hipparcos
 6.4.4 Other distance estimates
 6.4.5 Summary of the Pleiades distance
6.5 Distances to other nearby clusters
6.6 Other astrophysical applications
6.7 Searches for new clusters and members
6.8 Specific clusters
6.9 Kinematic groups
 6.9.1 Introduction
 6.9.2 Detection of kinematic groups
 6.9.3 Origin of kinematic groups
6.10 Associations
 6.10.1 Introduction
 6.10.2 Large-scale studies
 6.10.3 Individual associations
 6.10.4 Young nearby streams, associations or moving groups
 6.10.5 The Gould Belt

7 Stellar structure and evolution

7.1 Introduction
7.2 Observational framework and the HR diagram
 7.2.1 Bolometric magnitudes
 7.2.2 Effective temperatures
 7.2.3 Surface gravities
 7.2.4 Abundances
7.3 Theoretical framework
 7.3.1 Equation-of-state and opacities
 7.3.2 Atmospheres
 7.3.3 Transport processes
 7.3.4 Evolutionary tracks and isochrones
7.4 Fundamental parameters from Hipparcos
 7.4.1 Bolometric magnitudes
 7.4.2 Effective temperatures
 7.4.3 Surface gravities
 7.4.4 Stellar radii
9.1 Overall structure of the Galaxy
9.1.1 Overall structure of the Galaxy
9.1.2 Hipparcos contributions
9.1.3 Concepts and definitions
9.2 The Sun within the Galaxy
9.2.1 Distance to the Galactic centre
9.2.2 Distance from the Galactic plane
9.2.3 Velocity dispersion and vertex deviation
9.2.4 Solar motion with respect to the local standard of rest
9.2.5 Rotation speed of the disk
9.2.6 Stellar kinematics in the Oort–Lindblad model
9.2.7 Stellar kinematics in the Ogorodnikov–Milne model
9.2.8 Stellar kinematics and vector harmonics
9.3 Census of nearby stars
9.4 Derived characteristics
9.4.1 Mass density in the solar neighbourhood
9.4.2 Escape velocity
9.4.3 Initial mass function
9.4.4 Star-formation rate
9.5 Properties of the disk
9.6 Properties of the bar
9.7 Properties of the spiral arms
9.8 Properties of the stellar warp
9.9 The stellar halo
9.9.1 Mass and extent
9.9.2 Rotation, shape and velocity dispersion
9.9.3 Formation
9.9.4 Halo substructure
9.10 Models of the various Galaxy components
9.11 Globular clusters
9.11.1 Introduction
9.11.2 Ages
9.11.3 Independent age estimates of the oldest halo objects
9.11.4 Consequences of globular cluster ages
9.11.5 Kinematics and dynamics
9.11.6 Cluster disruption
9.11.7 Tidal streams and the mass of the Galaxy
9.11.8 Individual globular clusters
10 Solar System and exoplanets
10.1 Hipparcos Solar System objects
10.2 Asteroids: Masses and orbits
10.2.1 Mass determination
10.2.2 Orbits and photometry
10.3 Planets, satellites, occultations and appulses
10.4 Dynamical reference system
10.4.1 Constraining precession
10.4.2 Earth rotation and polar motion
10.5 Passage of nearby stars
10.6 Earth's climate
10.6.1 Maunder minimum
10.6.2 Sun's orbit and the spiral arms
10.6.3 Sun's orbit and Galactic plane passages
10.7 Exoplanets, brown dwarfs and disks
10.7.1 Introduction
10.7.2 Astrometric detection
Contents

10.7.3 Photometric transits 598
10.7.4 Host star properties 601
10.7.5 Proto-planetary disks 604
10.7.6 Habitability and related issues 606
10.7.7 Solar twins and solar analogues 607
10.7.8 Search for extraterrestrial intelligence 609

Appendix A Numerical quantities 619
Appendix B Acronyms 623
Appendix C Author gallery 628
Index of first authors 639
Subject index 658