Feynman-Kac-Type Theorems and Gibbs Measures on Path Space

With Applications to Rigorous Quantum Field Theory
Contents

Preface

1 Feynman–Kac-type theorems and Gibbs measures 1

1 Heuristics and history 3
 1.1 Feynman path integrals and Feynman–Kac formulae 3
 1.2 Plan and scope 7

2 Probabilistic preliminaries 11
 2.1 An invitation to Brownian motion 11
 2.2 Martingale and Markov properties 21
 2.2.1 Martingale property 21
 2.2.2 Markov property 25
 2.2.3 Feller transition kernels and generators 29
 2.2.4 Conditional Wiener measure 32
 2.3 Basics of stochastic calculus 33
 2.3.1 The classical integral and its extensions 33
 2.3.2 Stochastic integrals 34
 2.3.3 Itô formula 42
 2.3.4 Stochastic differential equations and diffusions 46
 2.3.5 Girsanov theorem and Cameron–Martin formula 50
 2.4 Lévy processes 53
 2.4.1 Lévy process and Lévy–Khintchine formula 53
 2.4.2 Markov property of Lévy processes 57
 2.4.3 Random measures and Lévy–Itô decomposition 61
 2.4.4 Itô formula for semimartingales 64
 2.4.5 Subordinators 67
 2.4.6 Bernstein functions 69

3 Feynman–Kac formulae 71
 3.1 Schrödinger semigroups 71
 3.1.1 Schrödinger equation and path integral solutions 71
 3.1.2 Linear operators and their spectra 72
 3.1.3 Spectral resolution 78
 3.1.4 Compact operators 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.5</td>
<td>Schrödinger operators</td>
<td>81</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Schrödinger operators by quadratic forms</td>
<td>85</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Confining potential and decaying potential</td>
<td>87</td>
</tr>
<tr>
<td>3.1.8</td>
<td>Strongly continuous operator semigroups</td>
<td>89</td>
</tr>
<tr>
<td>3.2</td>
<td>Feynman–Kac formula for external potentials</td>
<td>93</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Bounded smooth external potentials</td>
<td>93</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Derivation through the Trotter product formula</td>
<td>95</td>
</tr>
<tr>
<td>3.3</td>
<td>Feynman–Kac formula for Kato-class potentials</td>
<td>97</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Kato-class potentials</td>
<td>97</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Feynman–Kac formula for Kato-decomposable potentials</td>
<td>108</td>
</tr>
<tr>
<td>3.4</td>
<td>Properties of Schrödinger operators and semigroups</td>
<td>112</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Kernel of the Schrödinger semigroup</td>
<td>112</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Number of eigenfunctions with negative eigenvalues</td>
<td>113</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Positivity improving and uniqueness of ground state</td>
<td>120</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Degenerate ground state and Klauder phenomenon</td>
<td>124</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Exponential decay of the eigenfunctions</td>
<td>126</td>
</tr>
<tr>
<td>3.5</td>
<td>Feynman–Kac–Itô formula for magnetic field</td>
<td>131</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Feynman–Kac–Itô formula</td>
<td>131</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Alternate proof of the Feynman–Kac–Itô formula</td>
<td>135</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Extension to singular external potentials and vector potentials</td>
<td>138</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Kato-class potentials and L^p-L^q boundedness</td>
<td>142</td>
</tr>
<tr>
<td>3.6</td>
<td>Feynman–Kac formula for relativistic Schrödinger operators</td>
<td>143</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Relativistic Schrödinger operator</td>
<td>143</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Relativistic Kato-class potentials and L^p-L^q boundedness</td>
<td>149</td>
</tr>
<tr>
<td>3.7</td>
<td>Feynman–Kac formula for Schrödinger operator with spin</td>
<td>150</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Schrödinger operator with spin</td>
<td>150</td>
</tr>
<tr>
<td>3.7.2</td>
<td>A jump process</td>
<td>152</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Feynman–Kac formula for the jump process</td>
<td>154</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Extension to singular potentials and vector potentials</td>
<td>157</td>
</tr>
<tr>
<td>3.8</td>
<td>Feynman–Kac formula for relativistic Schrödinger operator with spin</td>
<td>162</td>
</tr>
<tr>
<td>3.9</td>
<td>Feynman–Kac formula for unbounded semigroups and Stark effect</td>
<td>166</td>
</tr>
<tr>
<td>3.10</td>
<td>Ground state transform and related diffusions</td>
<td>170</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Ground state transform and the intrinsic semigroup</td>
<td>170</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Feynman–Kac formula for $P(\phi)_1$-processes</td>
<td>174</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Dirichlet principle</td>
<td>181</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Mehler's formula</td>
<td>184</td>
</tr>
<tr>
<td>4</td>
<td>Gibbs measures associated with Feynman–Kac semigroups</td>
<td>190</td>
</tr>
<tr>
<td>4.1</td>
<td>Gibbs measures on path space</td>
<td>190</td>
</tr>
<tr>
<td>4.1.1</td>
<td>From Feynman–Kac formulae to Gibbs measures</td>
<td>190</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Definitions and basic facts</td>
<td>194</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>4.2</td>
<td>Existence and uniqueness by direct methods</td>
<td>201</td>
</tr>
<tr>
<td>4.2.1</td>
<td>External potentials: existence</td>
<td>201</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Uniqueness</td>
<td>204</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Gibbs measure for pair interaction potentials</td>
<td>208</td>
</tr>
<tr>
<td>4.3</td>
<td>Existence and properties by cluster expansion</td>
<td>217</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Cluster representation</td>
<td>217</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Basic estimates and convergence of cluster expansion</td>
<td>223</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Further properties of the Gibbs measure</td>
<td>224</td>
</tr>
<tr>
<td>4.4</td>
<td>Gibbs measures with no external potential</td>
<td>226</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Gibbs measure</td>
<td>226</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Diffusive behaviour</td>
<td>238</td>
</tr>
</tbody>
</table>

II Rigorous quantum field theory

5 **Free Euclidean quantum field and Ornstein–Uhlenbeck processes**

5.1 Background | 247
5.2 Boson Fock space | 249
5.2.1 Second quantization | 249
5.2.2 Segal fields | 255
5.2.3 Wick product | 257
5.3 \(Q\)-spaces | 258
5.3.1 Gaussian random processes | 258
5.3.2 Wiener–Itô–Segal isomorphism | 260
5.3.3 Lorentz covariant quantum fields | 262
5.4 Existence of \(Q\)-spaces | 263
5.4.1 Countable product spaces | 263
5.4.2 Bochner theorem and Minlos theorem | 264
5.5 Functional integration representation of Euclidean quantum fields | 268
5.5.1 Basic results in Euclidean quantum field theory | 268
5.5.2 Markov property of projections | 271
5.5.3 Feynman–Kac–Nelson formula | 274
5.6 Infinite dimensional Ornstein–Uhlenbeck process | 276
5.6.1 Abstract theory of measures on Hilbert spaces | 276
5.6.2 Fock space as a function space | 279
5.6.3 Infinite dimensional Ornstein–Uhlenbeck-process | 282
5.6.4 Markov property | 288
5.6.5 Regular conditional Gaussian probability measures | 290
5.6.6 Feynman–Kac–Nelson formula by path measures | 292

6 **The Nelson model by path measures**

6.1 Preliminaries | 293
7.8 Relativistic Pauli–Fierz model .. 418
 7.8.1 Definition .. 418
 7.8.2 Functional integral representation 420
 7.8.3 Translation invariant case 423
7.9 The Pauli–Fierz model with spin 424
 7.9.1 Definition .. 424
 7.9.2 Symmetry and polarization 427
 7.9.3 Functional integral representation 434
 7.9.4 Spin-boson model .. 447
 7.9.5 Translation invariant case 448

8 Notes and References ... 455

Bibliography ... 473

Index ... 499