APPLIED GEOPHYSICS IN PERIGLACIAL ENVIRONMENTS

C. HAUCK
University of Fribourg, Switzerland

and

C. KNEISEL
University of Wüzburg, Germany
Contents

List of contributors

Introduction

Part I Geophysical methods

1 Electrical methods
 C. Kneisel and C. Hauck
 1.1 Introduction
 1.2 Measurement principles
 1.3 Data acquisition
 1.4 Data processing
 1.5 Periglacial applications and particularities
 1.6 Conclusions
 1.7 Checklist
 References

2 Electromagnetic methods
 A. Hördt and C. Hauck
 2.1 Introduction
 2.2 Background
 2.3 Periglacial applications and particularities
 2.4 Conclusions
 2.5 Checklist
 References

3 Refraction seismics
 L. Schrott and T. Hoffmann
 3.1 Introduction
 3.2 Measurement principles
 3.3 Limitations of seismic refraction based on measurement principles
 3.4 Data acquisition
Contents

3.5 Data processing 69
3.6 Periglacial applications and particularities 76
3.7 Checklist 77
References 78

4 Ground-penetrating radar 81
 4.1 Berthling and K. Melvold 81
 4.2 Measurement principles 82
 4.3 Data acquisition 83
 4.4 Data processing 87
 4.5 Periglacial applications and particularities 90
 4.6 Recommendations 93
References 96

Part II Case studies 99

5 Typology of vertical electrical soundings for permafrost/ground ice investigation in the forefields of small alpine glaciers 101
 R. Delaloye and C. Lambiel 101
 5.1 Introduction 101
 5.2 Method 101
 5.3 Typology 103
 5.4 Conclusions 107
References 107

6 ERT imaging for frozen ground detection 109
 M. Ishikawa 109
 6.1 Introduction 109
 6.2 Data acquisition and quality control 110
 6.3 Case studies 111
 6.4 Summary 116
References 117

7 Electrical resistivity values of frozen soil from VES and TEM field observations and laboratory experiments 118
 K. Harada 118
 7.1 Introduction 118
 7.2 Methods 118
 7.3 Results 119
 7.4 Summary 124
References 124
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Results of geophysical surveys on Kasprowy Wierch, the Tatra Mountains, Poland</td>
<td>W. Dobinski, B. Zogala, K. Wzietek and L. Litwin</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>8.1 Introduction</td>
<td></td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>8.2 Field site</td>
<td></td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>8.3 Methods</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>8.4 Measurements</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>8.5 Analysis and interpretation of the measurements</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>8.6 Conclusions</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>9</td>
<td>Reassessment of DC resistivity in rock glaciers by comparing with P-wave velocity: a case study in the Swiss Alps</td>
<td>A. Ikeda</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>9.1 Introduction</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>9.2 Methods</td>
<td></td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>9.3 Field sites with borehole information</td>
<td></td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>9.4 Results</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>9.5 Discussion</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>9.6 Conclusions</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>10</td>
<td>Quantifying the ice content in low-altitude scree slopes using geophysical methods</td>
<td>C. Hauck and C. Kneisel</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>10.1 Introduction</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>10.2 Methods</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>10.3 Field sites</td>
<td></td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>10.4 Results</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>10.5 Discussion and conclusions</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>163</td>
</tr>
<tr>
<td>11</td>
<td>The use of GPR in determining talus thickness and talus structure</td>
<td>O. Sass</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>11.1 Introduction</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>11.2 Study sites and data acquisition</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>11.3 Results</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>11.4 Conclusions</td>
<td></td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>12.1 Introduction</td>
<td></td>
<td>172</td>
</tr>
</tbody>
</table>
12.2 Methods 172
12.3 Results and interpretation 173
12.4 Discussion 176
References 177

13 Arctic glaciers and ground-penetrating radar. Case study: Stagnation Glacier, Bylot Island, Canada 178
T. Irvine-Fynn and B. Moorman
13.1 Introduction 178
13.2 Field site 179
13.3 Field methods 181
13.4 Processing methods 182
13.5 Results 183
13.6 Discussion 187
13.7 Conclusions 188
References 188

14 Mapping of subglacial topography using GPR for determining subglacial hydraulic conditions 191
K. Melvold and T. V. Schuler
14.1 Introduction 191
14.2 Field site 194
14.3 Methodology 194
14.4 Results 199
14.5 Discussion 203
14.6 Conclusions 205
References 205

15 Snow measurements using GPR: example from Amundsenisen, Svalbard 207
K. Melvold
15.1 Introduction 207
15.2 GPR and GPS equipment and measurements 208
15.3 Data processing 210
15.4 Results and discussion 212
15.5 Conclusions 215
References 215

16 Mapping frazil ice conditions in rivers using ground penetrating radar 217
I. Berthling, H. Benjaminsen and A. Kvambekk
16.1 Introduction 217
16.2 Setting and field procedures 218
16.3 Results 219
Contents

16.4 Discussion 222
16.5 Conclusions 223
References 223

Appendix Tables of geophysical parameters for periglacial environments 225

Index 238

The colour plates are situated between pages 80 and 81.