The Ricci Flow: Techniques and Applications

Part II: Analytic Aspects

Bennett Chow
Sun-Chin Chu
David Glickenstein
Christine Guenther
James Isenberg
Tom Ivey
Dan Knopf
Peng Lu
Feng Luo
Lei Ni

American Mathematical Society
Contents

Preface ix
 What Part II is about ix
 Highlights and interdependencies of Part II xi
Acknowledgments xiii
Contents of Part II of Volume Two xvii
Notation and Symbols xxiii

Chapter 10. Weak Maximum Principles for Scalars, Tensors, and Systems 1
 1. Weak maximum principles for scalars and symmetric 2-tensors 2
 2. Vector bundle formulation of the weak maximum principle for systems 9
 3. Spatial maximum function and its Dini derivatives 24
 4. Convex sets, support functions, ODEs preserving convex sets 32
 5. Proof of the WMP for systems: time-dependent sets and avoidance sets 43
 6. Maximum principles for weak solutions of heat equations 47
 7. Variants of maximum principles 56
 8. Notes and commentary 65

Chapter 11. Closed Manifolds with Positive Curvature 67
 1. Multilinear algebra related to the curvature operator 69
 2. Algebraic curvature operators and Rm 77
 3. A family of linear transformations and their effect on \(\mathbf{R}^2 + \mathbf{R}^# \) 89
 4. Proof of the main formula for \(D_{a,b}(\mathbf{R}) \) 94
 5. The convex cone of 2-nonnegative algebraic curvature operators 105
 6. A pinching family of convex cones in the space of algebraic curvature operators 116
 7. Obtaining a generalized pinching set from a pinching family and the proof of Theorem 11.2 126
 8. Summary of the proof of the convergence of Ricci flow 134
 9. Notes and commentary 136

Chapter 12. Weak and Strong Maximum Principles on Noncompact Manifolds 139
1. Weak maximum principles for scalar heat-type equations 140
2. Mollifying distance functions on Riemannian manifolds 158
3. Weak maximum principle for parabolic systems 170
4. Strong maximum principle for parabolic systems 180
5. Applications to the curvature operator under the Ricci flow 192
6. Notes and commentary 195

Chapter 13. Qualitative Behavior of Classes of Solutions 197
1. Curvature conditions that are not preserved 197
2. Real analyticity in the space variables for solutions of the Ricci flow 210

Chapter 14. Local Derivative of Curvature Estimates 227
1. Introduction—fine versus coarse estimates 228
2. A quick review of the global derivative estimates 232
3. Shi’s local derivative estimates 235
4. Modified Shi’s local derivative estimates assuming bounds on some derivatives of curvatures of the initial metrics 244
5. Some applications of the local derivative estimates 251
6. Local heat equation and local Ricci flow 253
7. Notes and commentary 258

Chapter 15. Differential Harnack Estimates of LYH-type 259
1. Deriving the Harnack expression using Ricci solitons 259
2. Statement of the matrix Harnack estimate 263
3. Proofs: getting started with surfaces 265
4. Proof of the matrix Harnack estimate 268
5. A variant on Hamilton’s proof of the matrix Harnack estimate 287
6. Ricci solitons and ancient solutions attaining R_{max} 293
7. Applications of Harnack estimates 300
8. Notes and commentary 303

Chapter 16. Perelman’s Differential Harnack Estimate 305
1. Entropy and differential Harnack estimates for the heat equation 306
2. Properties of the heat kernel and linear entropy formula on complete manifolds 314
3. Differential Harnack estimate and characterizing \mathbb{R}^n by linear entropy 325
4. Perelman’s differential Harnack estimate 335
5. Notes and commentary 355

Appendix D. An Overview of Aspects of Ricci Flow 357
1. Existence, uniqueness, convergence, and curvature evolution 357
2. The rotationally symmetric neckpinch 360
3. Curvature pinching, derivative, and Harnack estimates 365
4. Perelman’s energy, entropy, and associated invariants 369
5. Compactness, no local collapsing, and singularity models 373
Appendix E. Aspects of Geometric Analysis Related to Ricci Flow
1. Green's function 379
2. Positive and fundamental solutions to the heat equation 388
3. Li–Yau differential Harnack estimate 403
4. Gradient estimates for the heat equation 405

Appendix F. Tensor Calculus on the Frame Bundle 411
1. Introduction 411
2. Tensors as vector-valued functions on the frame bundle 412
3. Local coordinates on the frame bundle 414
4. The metric on the frame bundle 415
5. A natural frame field on \(FM \) 416
6. Covariant differentiation 420
7. Curvature and commuting covariant derivatives 422
8. Reduction to the orthonormal frame bundle 423
9. Time dependent orthonormal frame bundle for solutions to the Ricci flow 426
10. The time vector field and its action on tensors 427
11. The heat operator and commutation formulas 429
12. Notes and commentary 431

Bibliography 433

Index 455