Partial Differential Equations in General Relativity

Alan D. Rendall
Max Planck Institute for Gravitational Physics,
Albert Einstein Institute, Am Mühlenberg 1,
14476 Potsdam, Germany
Contents

1 Introduction 1
 1.1 Physical background 1
 1.2 Mathematical background 4
 1.3 Structure of the book 6

2 General relativity 8
 2.1 Basic concepts 8
 2.1.1 Lorentzian algebra 8
 2.1.2 Lorentzian geometry 11
 2.1.3 Geodesic deviation and singularity theorems 16
 2.1.4 Volume and integration 20
 2.2 The Einstein equations 21
 2.3 The 3 + 1 decomposition 22
 2.4 Conformal rescalings 28
 2.5 Covering spaces and foliations 29
 2.6 Further reading 29

3 Matter models 30
 3.1 Scalar fields 33
 3.2 The Maxwell and Yang–Mills equations 39
 3.3 Continuum mechanics 41
 3.4 Kinetic theory 43
 3.5 Other matter models 46
 3.6 Further reading 49

4 Symmetry classes 50
 4.1 Static and stationary models 52
 4.2 Spatially homogeneous models 56
5 Ordinary differential equations

5.1	Existence and uniqueness	73
5.2	Dynamical systems	75
5.3	Formal power series solutions and asymptotic expansions	76
5.4	Linearization and the Hartman–Grobman theorem	79
5.5	Examples (Bianchi models)	80
5.5.1	The Wainwright–Hsu system	80
5.5.2	Models of Bianchi types II and VI\(_0\)	83
5.6	Centre manifolds and the reduction theorem	85
5.7	Further examples	86
5.7.1	Bianchi types II and VI\(_0\) revisited	86
5.7.2	The massive scalar field	88
5.7.3	Bianchi type III Einstein–Vlasov	90
5.8	Bifurcation theory	93
5.9	Global existence for homogeneous spacetimes	94
5.10	An application to surface symmetry	98
5.11	Further reading	102

6 Functional analysis

6.1	Abstract function spaces	103
6.2	Distributions	106
6.3	Concrete function spaces	108
6.4	Littlewood–Paley theory	115
6.5	Pseudodifferential operators	116
6.6	Further reading	118

7 Elliptic equations

7.1	The concept of ellipticity	119
7.2	Boundary value problems	122
7.3	Douglis–Nirenberg ellipticity	123
7.4	Fredholm operators	123
7.5	The Einstein constraints	127
7.6	Further reading	131
Hyperbolic equations

8.1 The Cauchy problem
8.2 Examples of ill-posed problems
8.3 Symmetric hyperbolic systems
8.4 Strong hyperbolicity
8.5 Leray hyperbolicity
8.6 The analytic Cauchy problem
8.7 Initial boundary value problems
8.8 The null condition
8.9 Global difficulties
8.10 Comparison with parabolic equations
8.11 Fuchsian methods
8.12 Further reading

The Cauchy problem for the Einstein equations

9.1 Coordinate conditions
9.2 The local Cauchy problem
9.3 Inclusion of matter
9.4 Cosmic censorship
9.5 The BKL picture
9.6 Further reading

Global results

10.1 Gowdy spacetimes
10.2 Stability of de Sitter space
10.3 Stability of Minkowski space
10.4 Stability of the Milne model
10.5 Stability of the flat Bianchi type III model
10.6 The Newtonian limit
10.7 Further reading

The Einstein–Vlasov system

11.1 Other kinetic equations
11.2 Small data global existence
11.2.1 Schwarzschild coordinates
11.2.2 Maximal-isotropic and double null coordinates