<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.6 Geomorphic Features Formed by Single and Recurrent Faulting</td>
<td>207</td>
</tr>
<tr>
<td>3.3 Stratigraphic Evidence of Paleoearthquakes</td>
<td>216</td>
</tr>
<tr>
<td>3.3.1 Characteristics of Near-Surface Normal Faults in Section</td>
<td>217</td>
</tr>
<tr>
<td>3.3.2 Distinguishing Tectonic from Depositional Features</td>
<td>221</td>
</tr>
<tr>
<td>3.3.3 Sedimentation and Soil Formation in the Fault Zone</td>
<td>226</td>
</tr>
<tr>
<td>3.3.4 Measuring Displacement on Normal Fault Exposures</td>
<td>242</td>
</tr>
<tr>
<td>3.3.5 Distinguishing Creep Displacement from Episodic Displacement</td>
<td>244</td>
</tr>
<tr>
<td>3.4 Dating Paleoearthquakes</td>
<td>245</td>
</tr>
<tr>
<td>3.4.1 Direct Dating of the Exposed Fault Plane</td>
<td>245</td>
</tr>
<tr>
<td>3.4.2 Direct Dating via Scarp Degradation Modeling</td>
<td>247</td>
</tr>
<tr>
<td>3.4.3 Age Estimates from Soil Development on Fault Scarps</td>
<td>251</td>
</tr>
<tr>
<td>3.4.4 Bracketing the Age of Faulting by Dating Geomorphic Surfaces</td>
<td>253</td>
</tr>
<tr>
<td>3.4.5 Bracketing the Age of Faulting by Dating Displaced Deposits</td>
<td>254</td>
</tr>
<tr>
<td>3.4.6 Bracketing the Age of Faulting by Dating Colluvial Wedges</td>
<td>255</td>
</tr>
<tr>
<td>3.4.7 Age Estimates from Cosmogenic Nuclides in Depth Profiles on Fault Scarps</td>
<td>259</td>
</tr>
<tr>
<td>3.5 Interpreting the Paleoseismic History by Retrodeformation</td>
<td>260</td>
</tr>
<tr>
<td>3.5.1 Types of Retrodeformations</td>
<td>261</td>
</tr>
<tr>
<td>3.5.2 Assumptions Used when Restoring Strata to their Prefaulting Geometry</td>
<td>261</td>
</tr>
<tr>
<td>3.5.3 Accounting for Soil Development in Retrodeformation</td>
<td>264</td>
</tr>
<tr>
<td>3.6 Distinguishing Tectonic from Nontectonic Normal Faults</td>
<td>266</td>
</tr>
<tr>
<td>3.6.1 Tectonic, but Nonseismogenic Normal Faults</td>
<td>266</td>
</tr>
<tr>
<td>3.6.2 Nontectonic, but Seismogenic Normal Faults</td>
<td>267</td>
</tr>
<tr>
<td>3.6.3 Nontectonic and Nonseismogenic Normal Faults</td>
<td>267</td>
</tr>
</tbody>
</table>

Chapter 4: Paleoseismology of Volcanic Environments

4.1 Introduction

4.2 Volcano-Extensional Structures

4.2.1 Worldwide Examples of Volcano-Extensional Structures

4.2.2 Central Volcanoes and Calderas

4.2.3 Volcanic Rift Zones

4.2.4 Magma-Induced Slope Instability

4.3 Criteria for Field Recognition of Volcano-Extensional Features

4.3.1 Results of Empirical and Numerical Modeling

4.3.2 Volcano-Tectonic Geomorphology

4.3.3 Geophysical Methods

4.3.4 Geodetic Remote-Sensing Techniques

4.4 Paleoseismological Implications and Methods

4.4.1 Excavation
Chapter 5: Paleoseismology of Compressional Tectonic Environments

5.1 Introduction

5.1.1 Organization of This Chapter

5.1.2 Styles, Scales, and Environments of Deformation

5.1.3 The Earthquake Deformation Cycle of Reverse Faults

5.1.4 Historic Analog Earthquakes

5.2 Geomorphic Evidence of Reverse Paleoearthquakes

5.2.1 Initial Morphology of Reverse and Thrust Fault Scarps

5.2.2 Degradation of Thrust Fault Scarps

5.2.3 Interaction of Thrust Fault Scarps with Geomorphic Surfaces

5.2.4 Slip Rate Studies

5.2.5 Spatial and Temporal Variations in Surface Displacement

5.3 Stratigraphic Evidence of Reverse and Thrust Paleoearthquakes

5.3.1 General Style of Deformation on Reverse Faults in Section

5.3.2 Trenching Techniques

5.3.3 Structure and Evolution of Reverse-Fault Scarps

5.3.4 Structure and Evolution of Thrust Fault Scarps

5.3.5 Stratigraphic Bracketed Offset

5.3.6 Fault-Onlap Sedimentary Sequences

5.3.7 Summary of Stratigraphic Evidence for Thrust Paleoearthquakes

5.3.8 Distinguishing Creep Displacement from Episodic Displacement

5.4 Dating Paleoearthquakes

5.4.1 Direct Dating of the Exposed Fault Plane

5.4.2 Direct Dating via Scarp Degradation Modeling

5.4.3 Age Estimates from Soil Development on Fault Scarps

5.4.4 Bracketing the Age of Faulting by Dating Displaced Deposits

5.5 Interpreting the Paleoseismic History by Retrodeformation

5.5.1 Rigid-Block Retrodeformations

5.5.2 Plastic Retrodeformations

5.6 Distinguishing Seismogenic from Nonseismogenic Reverse Faults

5.6.1 Tectonic, but Nonseismogenic Reverse Faults

5.6.2 Nontectonic, but Seismogenic Reverse Faults

5.6.3 Nontectonic and Nonseismogenic Reverse Faults

5.7 Hazards Due to Reverse Surface Faulting
Chapter 7: Using Liquefaction-Induced and Other Soft-Sediment Features for Paleoseismic Analysis

7.1 Introduction

7.2 Overview of the Formation of Liquefaction-Induced Features
 7.2.1 Process of Liquefaction and Fluidization
 7.2.2 Factors Affecting Liquefaction Susceptibility and Effects of Fluidization

7.3 Criteria for an Earthquake-Induced Liquefaction Origin

7.4 Historic and Prehistoric Liquefaction—Selected Studies
 7.4.1 Coastal South Carolina
 7.4.2 New Madrid Seismic Zone
 7.4.3 Wabash Valley Seismic Zone
 7.4.4 Coastal Washington State

7.5 Features Generally of Nonseismic or Unknown Origin
 7.5.1 Terrestrial Disturbance Features
 7.5.2 Features Formed in Subaqueous Environments
 7.5.3 Features Formed by Weathering
 7.5.4 Features Formed in a Periglacial Environment

7.6 Estimation of Strength of Paleoeartquakes
 7.6.1 Association with Modified Mercalli Intensity
 7.6.2 Magnitude Bound
 7.6.3 Engineering-Based Procedures
 7.6.4 Overview of Estimates of Magnitude
 7.6.5 Negative Evidence
Chapter 8: Using Landslides for Paleoseismic Analysis

8.1 Introduction ... 565
8.2 Identifying Landslides .. 566
8.3 Determining Landslide Ages 568
8.3.1 Historical Methods .. 568
8.3.2 Dendrochronology ... 568
8.3.3 Radiometric and Cosmogenic Dating 569
8.3.4 Lichenometry .. 570
8.3.5 Weathering Rinds ... 570
8.3.6 Pollen Analysis ... 570
8.3.7 Geomorphic Analysis .. 570
8.4 Interpreting an Earthquake Origin for Landslides 571
8.4.1 Regional Analysis of Landslides 571
8.4.2 Landslide Morphology 574
8.4.3 Sackungen ... 575
8.4.4 Sediment from Earthquake-Triggered Landslides 577
8.4.5 Landslides That Straddle Fault 578
8.4.6 Precariously Balanced Rocks 578
8.4.7 Speleoseismology .. 579
8.4.8 Summary ... 580
8.5 Analysis of the Seismic Origin of a Landslide 580
8.5.1 Physical Setting of Landslides in the New Madrid Seismic Zone 581
8.5.2 Geotechnical Investigation 581
8.5.3 Static (Aseismic) Slope-Stability Analysis 583
8.5.4 Dynamic (Seismic) Slope-Stability Analysis 584
8.5.5 Analysis of Unknown Seismic Conditions 595
8.6 Interpreting Results of Paleoseismic Landslide Studies 596
8.6.1 Characteristics of Landslides Triggered by Earthquakes 596
8.6.2 Interpreting Earthquake Magnitude and Location .. 599
8.7 Final Comments .. 600

Index .. 603

Supplemental materials, including a chapter on Applications of Paleoseismic Data to Seismic Hazard Assessment and the book's Appendices and References, can be found on the companion website at http://www.elsevierdirect.com/companions/9780123735768