Exact and Approximate Controllability for Distributed Parameter Systems

A Numerical Approach

ROLAND GLOWINSKI

University of Houston

JACQUES-LOUIS LIONS

College de France, Paris

JIWEN HE

University of Houston

Contents

rejace		page xı
Intr	oduction	1
I.1	What it is all about?	1
I.2	Motivation	2
· I.3	Topologies and numerical methods	3
I.4	Choice of the control	4
1.5	Relaxation of the controllability notion	4
I.6	Various remarks	5
Part I	Diffusion Models	
l Dist	ributed and pointwise control for linear diffusion equations	9
1.1	First example	. 9
. 1.2	Approximate controllability	12
. 1.3	Formulation of the approximate controllability problem	. 14
1.4	Dual problem	15
1.5	Direct solution to the dual problem	17
1.6	Penalty arguments	19
1.7	L^{∞} cost functions and bang-bang controls	22
1.8	Numerical methods	28
1.9	Relaxation of controllability	57
	Pointwise control	. 62
. 1.11	Further remarks (I): Additional constraints on the state function	96
1.12	Further remarks (II): A bisection based memory saving method for	
	the solution of time dependent control problems by adjoint equatio	n
	based methodologies	112
1.13		
	based control methods	117

viii Contents

2	Bou	ndary control	124
	2.1	Dirichlet control (I): Formulation of the control problem	124
	2.2	Dirichlet control (II): Optimality conditions and dual formulations	126
	2.3	Dirichlet control (III): Iterative solution of the control problems	128
	2.4	Dirichlet control (IV): Approximation of the control problems	133
	2.5	Dirichlet control (V): Iterative solution of the fully discrete	-5
		dual problem (2.124)	143
	2.6	Dirichlet control (VI): Numerical experiments	146
	2.7	Neumann control (I): Formulation of the control problems	
		and synopsis	155
	2.8	Neumann control (II): Optimality conditions and dual formulations	163
	2.9	Neumann control (III): Conjugate gradient solution of the	·
		dual problem (2.192)	176
	2.10	Neumann control (IV): Iterative solution of the	
		dual problem (2.208), (2.209)	178
	2.11	Neumann control of unstable parabolic systems:	
		a numerical approach	178
	2.12	Closed-loop Neumann control of unstable parabolic systems	_ ;-
		via the Riccati equation approach	223
3	Con	trol of the Stokes system	23
	3.1	Generalities. Synopsis	. 23
	3.2	Formulation of the Stokes system. A fundamental	
		controllability result	23
	3.3	Two approximate controllability problems	234
	3.4	Optimality conditions and dual problems	234
\	3.5	Iterative solution of the control problem (3.19)	230
	3.6	Time discretization of the control problem (3.19)	238
*	3.7	Numerical experiments	239
		www.com	:
	~	en de la companya de	
4		trol of nonlinear diffusion systems	
		Generalities. Synopsis	` 243
	4.2	Example of a noncontrollable nonlinear system	
	4.3	Pointwise control of the viscous Burgers equation	24:
	4.4	On the controllability and the stabilization of the	
		Kuramoto-Sivashinsky equation in one space dimension	259
			;
5	Dyn	amic programming for linear diffusion equations	27
	5.1	Introduction. Synopsis	27
	5.2	Derivation of the Hamilton–Jacobi–Bellman equation	278
	5.3	Some remarks	279

Contents ix

Part II Wave Models

283
285
286
287
288
289
291
291
315
319
320
328
329
**
332
332
332
334
334
336
337
340
341
349
355
356
356
359
367

Part III Flow Control

9	Opti	mai control of systems modelled by the Navier–Stokes equations:	
	Application to drag reduction		
1	9.1	Introduction. Synopsis	371
	9.2	Formulation of the control problem	373
	9.3	Time discretization of the control problem	377
	9.4	Full discretization of the control problem	379
	9.5	Gradient calculation	384
	9.6	A BFGS algorithm for solving the discrete control problem	388
	9.7	Validation of the flow simulator	389
	9.8	Active control by rotation	394
	9.9	Active control by blowing and suction	408
	9.10	Further comments on flow control and conclusion	419
Ер	Epilogue		426
Further Acknowledgements		Acknowledgements	429
Rej	References		430
Index of names		450	
Index of subjects		454	