

FIELDS INSTITUTE COMMUNICATIONS

THE FIELDS INSTITUTE FOR RESEARCH IN MATHEMATICAL SCIENCES

Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis

Luigi Rodino
Bert-Wolfgang Schulze
M. W. Wong
Editors

American Mathematical Society
Providence, Rhode Island

The Fields Institute for Research in Mathematical Sciences Toronto, Ontario

Contents

Preface	vii
On Hörmander Operators and Non-Holonomic Geometry Peter Greiner	1
Weyl Transforms and the Inverse of the Sub-Laplacian on the Heisenberg Group Aparajita Dasgupta and M. W. Wong	27
Pseudo-Differential Calculus on Manifolds with Geometric Singularities BW. Schulze	37
Corner Operators and Applications to Elliptic Complexes CI. MARTIN	85
Ellipticity of a Class of Corner Operators N. Dines	131
Pseudodifferential Methods for Boundary Value Problems CHARLES L. EPSTEIN	171
Invertibility of Parabolic Pseudodifferential Operators V. Rabinovich	201
Semilinear Pseudo-Differential Equations and Travelling Waves MARCO CAPPIELLO, TODOR GRAMCHEV and LUIGI RODINO	213
Continuity and Compactness Properties of Pseudo-Differential Operators Ernesto Buzano and Joachim Toft	239
Trace Ideals for Fourier Integral Operators with Non-Smooth Symbols Francesco Concetti and Joachim Toft	255
Schatten-von Neumann Norm Inequalities for Two-Wavelet Localization Operators VIOREL CATANĂ	265
Why Use the S-Transform?	279

vi		Contents

Applying the S-Transform to Magnetic Resonance Imaging Texture Analysis THORARIN A. BJARNASON, SYLVIA DRABYCZ, DANIEL H. ADLER, J. GREGORY CAIRNCROSS and J. ROSS MITCHELL	311
Inversion Formulas for Two-Dimensional Stockwell Transforms Yu Liu and M. W. Wong	323
Localization of Signal and Image Features with the TT-Transform C. ROBERT PINNEGAR	331
Weight Functions in Time-Frequency Analysis KARLHEINZ GRÖCHENIG	343
Shannon Type Sampling Theorems on the Heisenberg Group R. RADHA and S. SIVANANTHAN	367
Rihaczek Transforms and Pseudo-Differential Operators ALIP MOHAMMED and M. W. WONG	375
A Unified Point of View on Time-Frequency Representations and Pseudo-Differential Operators PAOLO BOGGIATTO, GIUSEPPE DE DONNO and ALESSANDRO OLIARO	383
Blind Source Separation Using Time-Frequency Analysis RYUICHI ASHINO, TAKESHI MANDAI, AKIRA MORIMOTO and FUMIO SASAKI	401

•