Contents

Preface

1 Hydrodynamics

1.1 The Mass Conservation Equation 2
1.2 The Momentum Conservation Equation 3
1.3 The Energy Conservation Equation 5
1.4 Bernoulli's Theorem 7
1.5 The Equations of Hydrodynamics in Conservative Form 8
1.6 Viscous Fluids 11
1.7 Small Perturbations 15
1.8 Discontinuity 18
 1.8.1 Surfaces of Discontinuity 19
 1.8.2 Shock Waves 22
 1.8.3 Physical Interpretation of Shock Waves 23
 1.8.4 Collisional and Noncollisional Shocks 25
 1.8.5 Formation of a Shock 26
1.9 Self-similar Solutions 28
 1.9.1 Self-similar Solutions of the Second Kind 33
1.10 Relativistic Hydrodynamics 38
 1.10.1 Shock Waves in Relativistic Hydrodynamics 41
1.10.2 The Strong Explosion 43
1.11 The De Laval Nozzle 47
1.12 Problems 53

2 Magnetohydrodynamics and Magnetic Fields 55
2.1 Equations of Motion 56
2.1.1 The Limit of Ideal Magnetohydrodynamics 60
2.1.2 Equations of Motion in a Conservative Form 62
2.2 The Force Exerted by the Magnetic Field 64
2.3 Magnetic Flux Freezing 66
2.4 Small Perturbations in a Homogeneous Medium 70
2.5 Stability of Tangential Discontinuities 77
2.6 Two-Temperature Fluids 81
2.7 Magnetic Buoyancy and Reconnection 84
2.7.1 Magnetic Buoyancy 84
2.7.2 Reconnection 88
2.8 Shock Waves 92
2.9 Magnetic Fields in Astrophysics 95
2.9.1 Observations 95
2.9.2 Origin of Magnetic Fields 101
2.10 Problems 113

3 Radiative Processes 115
3.1 Radiative Transport 115
3.1.1 Radiation Transport 120
3.2 Low-Temperature Thermal Emission 124
3.3 Bremsstrahlung 128
3.4 Synchrotron 131
3.4.1 Power Radiated by a Single Particle .. 131
3.4.2 The Spectrum of a Single Particle .. 134
3.4.3 The Spectrum of a Group of Nonthermal Particles 138
3.4.4 Quantum Corrections 140
3.4.5 Self-absorption 142
3.4.6 Cyclotron Lines 144
3.4.7 Processes in an Intense Magnetic Field 146
3.4.8 The Razin-Tsytovich Effect 148
3.5 Compton Processes 150
3.5.1 Physical Mechanism of the Inverse Compton 152
3.5.2 The Spectrum of Inverse Compton Processes 157
3.5.3 About the Compton Parameter 167
3.5.4 Self-synchro-Compton and Compton Limit 168
3.5.5 Compton Broadening 171
3.6 Relativistic Effects 172
3.6.1 Superluminal Motions 173
3.6.2 Emission Properties of Relativistic Sources 174
3.7 Pair Creation and Annihilation 177
3.8 Cosmological Attenuations 181
3.8.1 Protons 181
3.8.2 Photons 186
3.9 Problems 188

4 Nonthermal Particles 191
4.1 The Classic Theory of Acceleration 192
4.1.1 Acceleration 193
4.1.2 Injection 206
4.2 Constraints on the Maximum Energy 208
CONTENTS

6.3 Special Relations 310
6.4 The α Prescription 315
6.5 Equations for the Structure of Disks 318
6.6 The Standard Solution 322
6.7 The Origin of Torque 326
6.8 Disk Stability 331
 6.8.1 Time Scales 331
 6.8.2 Instability 332
6.9 Lense-Thirring Precession 337
6.10 Problems 345

7 Disk Accretion II 347
 7.1 Other Disk Models 347
 7.1.1 The Origin of Particles 349
 7.1.2 Dynamic Peculiarities of Pair
 Plasmas 351
 7.1.3 The Pair Plasma without Input of
 External Photons 352
 7.1.4 The Pair Plasma with Input of
 External Photons 362
 7.2 Thick Accretion Disks 366
 7.2.1 Some General Properties 368
 7.2.2 The Inapplicability of the
 Eddington Limit 371
 7.2.3 Polytropic Models 374
 7.2.4 Properties of Thick Disks 376
 7.3 Nondissipative Accretion Flows 379
 7.4 Further Developments of the Theory 386
 7.4.1 General-Relativistic Corrections 387
 7.4.2 The Fate of Angular Momentum at
 Large Radii 387
 7.5 Accretion Disks on Magnetized
 Objects 393
 7.5.1 The Alfvén Radius 394
7.5.2 Interaction between the Disk and the Magnetosphere 401

7.5.3 Accretion Columns 403

7.6 Boundary Layers 414

7.7 Problems 417

8 Electrodynamics of Compact Objects 419

8.1 The Gold-Pacini Mechanism 420

8.2 The Magnetospheres Surrounding Pulsars 422

8.2.1 Quasi-Neutral or Charge-Separated Plasma? 427

8.2.2 The Goldreich and Julian Magnetosphere 429

8.2.3 The Pulsar Equation 432

8.2.4 The Solution 443

8.2.5 The Transport of Angular Momentum 444

8.2.6 Discussion 448

8.3 The Blandford-Znajek Model 450

8.3.1 The Magnetic Field of a Black Hole 450

8.3.2 The Black Hole Equation 456

8.3.3 The Transport of Energy and of Angular Momentum 470

8.3.4 A Qualitative Discussion 473

8.3.5 A Simplified Discussion of Total Energetics 475

8.4 The Generation of Charges 479

8.5 Disk-Jet Coupling 482

8.5.1 The Lovelace-Blandford Model 484

8.5.2 A Special Solution 485

8.5.3 Discussion 490

8.5.4 A Model Including Inertial Effects 494

8.5.5 A Special Solution 500

8.5.6 Results 503

8.5.7 A Brief Summary 508

8.6 Problems 510