Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Algebraic and analytic subspaces</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Elliptic curves</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Notation</td>
<td>10</td>
</tr>
<tr>
<td>2 Manifolds</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Manifolds defined in the traditional way</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Sheaves of rings and ringed spaces</td>
<td>14</td>
</tr>
<tr>
<td>2.3 There are not many maps of ringed spaces</td>
<td>19</td>
</tr>
<tr>
<td>2.4 The sheaf theoretic definition of a manifold</td>
<td>23</td>
</tr>
<tr>
<td>3 Schemes</td>
<td>26</td>
</tr>
<tr>
<td>3.1 The space Spec((\mathcal{R}))</td>
<td>27</td>
</tr>
<tr>
<td>3.2 A basis for the Zariski topology</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Localization of rings</td>
<td>31</td>
</tr>
<tr>
<td>3.4 The sheaf (\tilde{\mathcal{R}}) on Spec((\mathcal{R}))</td>
<td>36</td>
</tr>
<tr>
<td>3.5 A return to the world of simple examples</td>
<td>44</td>
</tr>
<tr>
<td>3.6 Maps of ringed spaces (Spec((\tilde{\mathcal{S}})), (\tilde{\mathcal{S}})) → (Spec((\mathcal{R})), (\tilde{\mathcal{R}}))</td>
<td>50</td>
</tr>
<tr>
<td>3.7 Some immediate consequences</td>
<td>54</td>
</tr>
<tr>
<td>3.8 A reminder of Hilbert’s Nullstellensatz</td>
<td>59</td>
</tr>
<tr>
<td>3.9 Ringed spaces over (\mathbb{C})</td>
<td>60</td>
</tr>
<tr>
<td>3.10 Schemes of finite type over (\mathbb{C})</td>
<td>64</td>
</tr>
<tr>
<td>4 The complex topology</td>
<td>71</td>
</tr>
<tr>
<td>4.1 Synopsis of the main results</td>
<td>71</td>
</tr>
<tr>
<td>4.2 The subspace Max((X)) (\subset X)</td>
<td>72</td>
</tr>
</tbody>
</table>
4.3 The correspondence between maximal ideals and $\varphi : R \to \mathbb{C}$ 77
4.4 The special case of the polynomial ring 79
4.5 The complex topology on $\text{MaxSpec}(R)$ 83
4.6 The complex topology on schemes 91

5 The analytification of a scheme 100
5.1 Synopsis of the main results 100
5.2 The Hilbert Basis Theorem 102
5.3 The sheaf of analytic functions on an affine scheme 104
5.4 A reminder about Fréchet spaces 111
5.5 The ring of analytic functions as a completion 116
5.6 Allowing the ring and the generators to vary 120
5.7 Affine schemes, done without coordinates 132
5.8 In the world of elementary examples 142
5.9 Gluing it all 159

6 The high road to analytification 162
6.1 A coordinate-free approach to polydiscs 162
6.2 The high road to the complex topology 166
6.3 The high road to the sheaf of analytic functions 167

7 Coherent sheaves 170
7.1 Sheaves of modules on a ringed space 171
7.2 The sheaves \tilde{M} 179
7.3 Localization for modules 181
7.4 The sheaf of modules more explicitly 183
7.5 Morphisms of sheaves 185
7.6 Coherent algebraic sheaves 190
7.7 Coherent analytic sheaves 200
7.8 The analytification of coherent algebraic sheaves 201
7.9 The statement of GAGA 207

8 Projective space – the statements 211
8.1 Products of affine schemes 213
8.2 Affine group schemes 216
8.3 Affine group schemes acting on affine schemes 221
8.4 The action of the group of closed points 228
8.5 Back to the world of the concrete 236
8.6 Quotients of affine schemes 239
8.7 Sheaves on the quotient 245
8.8 The main results 248
8.9 What it all means, in a concrete example 253
Contents

9 Projective space – the proofs
- 9.1 A reminder of symmetric powers 272
- 9.2 Generators 273
- 9.3 Finite dimensional representations of \(\mathbb{C}^* \) 282
- 9.4 The finite generation of the ring of invariants 289
- 9.5 The topological facts about \(\pi : X \to X/G \) 292
- 9.6 The sheaves on \(X/G \) 299
- 9.7 Two technical lemmas 303
- 9.8 The global statement about coherent sheaves 310
- 9.9 The case of the trivial group 323

10 The proof of GAGA
- 10.1 The sheaves \(\mathcal{O}(m) \) 327
- 10.2 Another visit to the concrete world 329
- 10.3 Maps between the sheaves \(\mathcal{O}(m) \) 337
- 10.4 The coherent analytic version 342
- 10.5 Sheaf cohomology 349
- 10.6 GAGA in terms of cohomology 355
- 10.7 The first half of GAGA 369
- 10.8 Skyscraper sheaves 372
- 10.9 Skyscraper sheaves on \(\mathbb{P}^n \) 378
- 10.10 The second half of GAGA 383

Appendix 1 The proofs concerning analytification 392

Bibliography 409

Glossary 410

Index 413