Contents

Preface ix
Acknowledgements xi

Introduction 1

1 Basic features of smooth worlds 16

2 Basic differential calculus 24
2.1 The derivative of a function 24
2.2 Stationary points of functions 27
2.3 Areas under curves and the Constancy Principle 28
2.4 The special functions 30

3 First applications of the differential calculus 35
3.1 Areas and volumes 35
3.2 Volumes of revolution 40
3.3 Arc length; surfaces of revolution; curvature 43

4 Applications to physics 49
4.1 Moments of inertia 49
4.2 Centres of mass 54
4.3 Pappus' theorems 55
4.4 Centres of pressure 58
4.5 Stretching a spring 60
4.6 Flexure of beams 60
4.7 The catenary, the loaded chain and the bollard-rope 63
4.8 The Kepler–Newton areal law of motion under a central force 67
Contents

5 Multivariable calculus and applications 69
 5.1 Partial derivatives 69
 5.2 Stationary values of functions 72
 5.3 Theory of surfaces. Spacetime metrics 75
 5.4 The heat equation 81
 5.5 The basic equations of hydrodynamics 82
 5.6 The wave equation 84
 5.7 The Cauchy–Riemann equations for complex functions 86

6 The definite integral. Higher-order infinitesimals 89
 6.1 The definite integral 89
 6.2 Higher-order infinitesimals and Taylor’s theorem 92
 6.3 The three natural microneighbourhoods of zero 95

7 Synthetic differential geometry 96
 7.1 Tangent vectors and tangent spaces 96
 7.2 Vector fields 98
 7.3 Differentials and directional derivatives 98

8 Smooth infinitesimal analysis as an axiomatic system 102
 8.1 Natural numbers in smooth worlds 108
 8.2 Nonstandard analysis 110

Appendix. Models for smooth infinitesimal analysis 113
Note on sources and further reading 119
References 121
Index 123