Linear Algebra Thoroughly Explained
Contents

1 Vector Spaces ... 1
 1.1 Introduction ... 1
 1.2 Geometrical Vectors in a Plane 2
 1.3 Vectors in a Cartesian (Analytic) Plane \mathbb{R}^2 5
 1.4 Scalar Multiplication (The Product of a Number with a Vector) 7
 1.5 The Dot Product of Two Vectors (or the Euclidean Inner Product of Two Vectors in \mathbb{R}^2) 8
 1.6 Applications of the Dot Product and Scalar Multiplication 10
 1.7 Vectors in Three-Dimensional Space (Spatial Vectors) 15
 1.8 The Cross Product in \mathbb{R}^3 18
 1.9 The Mixed Triple Product in \mathbb{R}^3. Applications of the Cross and Mixed Products 21
 1.10 Equations of Lines in Three-Dimensional Space 24
 1.11 Equations of Planes in Three-Dimensional Space 26
 1.12 Real Vector Spaces and Subspaces 28
 1.13 Linear Dependence and Independence. Spanning Subsets and Bases 30
 1.14 The Three Most Important Examples of Finite-Dimensional Real Vector Spaces ... 33
 1.14.1 The Vector Space \mathbb{R}^n (Number Columns) 33
 1.14.2 The Vector Space $\mathbb{R}_{n \times n}$ (Matrices) 35
 1.14.3 The Vector Space P_3 (Polynomials) 37
 1.15 Some Special Topics about Matrices 39
 1.15.1 Matrix Multiplication 39
 1.15.2 Some Special Matrices 40

A Determinants .. 45
 A.1 Definitions of Determinants 45
 A.2 Properties of Determinants 49
4 Dual Spaces and the Change of Basis .. 145
 4.1 The Dual Space U^*_n of a Unitary Space U_n 145
 4.2 The Adjoint Operator .. 153
 4.3 The Change of Bases in $V_n(F)$: .. 157
 4.3.1 The Change of the Matrix-Column ξ That Represents
 a Vector $x \in V_n(F)$ (Contravariant Vectors) 158
 4.3.2 The Change of the $n \times n$ Matrix A That Represents
 an Operator $A \in L(V_n(F), V_n(F))$ (Mixed Tensor
 of the Second Order) .. 159
 4.4 The Change of Bases in Euclidean (E_n) and Unitary (U_n) Vector
 Spaces ... 162
 4.5 The Change of Biorthogonal Bases in $V^*_n(F)$
 (Covariant Vectors) ... 164
 4.6 The Relation between $V_n(F)$ and $V^*_n(F)$ is Symmetric
 (The Invariant Isomorphism between $V_n(F)$ and $V^{**}_n(F)$)...... 167
 4.7 Isodualism—The Invariant Isomorphism between the Superspaces
 $L(V_n(F), V_n(F))$ and $L(V^*_n(F), V^*_n(F))$ 168

5 The Eigen Problem or Diagonal Form of Representing Matrices 173
 5.1 Eigenvalues, Eigenvectors, and Eigenspaces 173
 5.2 Diagonalization of Square Matrices ... 180
 5.3 Diagonalization of an Operator in U_n 183
 5.3.1 Two Examples of Normal Matrices 188
 5.4 The Actual Method for Diagonalization of a Normal Operator 191
 5.5 The Most Important Subsets of Normal Operators in U_n 194
 5.5.1 The Unitary Operators $A^\dagger = A^{-1}$ 194
 5.5.2 The Hermitian Operators $A^\dagger = A$ 198
 5.5.3 The Projection Operators $P^\dagger = P = P^2$ 200
 5.5.4 Operations with Projection Operators 203
 5.5.5 The Spectral Form of a Normal Operator A 207
 5.6 Diagonalization of a Symmetric Operator in E_3 208
 5.6.1 The Actual Procedure for Orthogonal Diagonalization
 of a Symmetric Operator in E_3 214
 5.6.2 Diagonalization of Quadratic Forms 218
 5.6.3 Conic Sections in \mathbb{R}^2 .. 220
 5.7 Canonical Form of Orthogonal Matrices 228
 5.7.1 Orthogonal Matrices in \mathbb{R}^n 228
 5.7.2 Orthogonal Matrices in \mathbb{R}^2 (Rotations and Reflections) 229
 5.7.3 The Canonical Forms of Orthogonal Matrices in \mathbb{R}^3
 (Rotations and Rotations with Inversions) 240

6 Tensor Product of Unitary Spaces .. 243
 6.1 Kronecker Product of Matrices ... 243
 6.2 Axioms for the Tensor Product of Unitary Spaces 247
 6.2.1 The Tensor product of Unitary Spaces \mathbb{C}^m and \mathbb{C}^n 247
6.2.2 Definition of the Tensor Product of Unitary Spaces, in Analogy with the Previous Example 249
6.3 Matrix Representation of the Tensor Product of Unitary Spaces 250
6.4 Multiple Tensor Products of a Unitary Space \(U_n \) and of its Dual Space \(U_n^* \) as the Principal Examples of the Notion of Unitary Tensors 252
6.5 Unitary Space of Antilinear Operators \(\hat{L}_a(U_m, U_n) \) as the Main Realization of \(U_m \otimes U_n \) 254
6.6 Comparative Treatment of Matrix Representations of Linear Operators from \(\hat{L}(U_m, U_n) \) and Antimatrix Representations of Antilinear Operators from \(\hat{L}_a(U_m, U_n) = U_m \otimes U_n \) 257

7 The Dirac Notation in Quantum Mechanics: Dualism between Unitary Spaces (Sect. 4.1) and Isodualism between Their Superspaces (Sect. 4.7) 263
7.1 Repeating the Statements about the Dualism D 263
7.2 Invariant Linear and Antilinear Bijectipns between the Superspaces \(\hat{L}(U_n, U_n) \) and \(\hat{L}(U_n^*, U_n^*) \) 266
7.2.1 Dualism between the Superspaces 266
7.2.2 Isodualism between Unitary Superspaces 267
7.3 Superspaces \(\hat{L}(U_n, U_n) \cong \hat{L}(U_n^*, U_n^*) \) as the Tensor Product of \(U_n \) and \(U_n^* \), i.e., \(U_n \otimes U_n^* \) 270
7.3.1 The Tensor Product of \(U_n \) and \(U_n^* \) 270
7.3.2 Representation and the Tensor Nature of Diads 271
7.3.3 The Proof of Tensor Product Properties 272
7.3.4 Diad Representations of Operators 274

Bibliography 279

Index 281