Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup

EDITED BY

G. D. KARNER,
ExxonMobil Upstream Research Company, Houston, USA

G. MANATSCHAL
Université Louis Pasteur, Strasbourg, France

and

L. M. PINHEIRO
Universidade de Aveiro, Aveiro, Portugal

2007
Published by
The Geological Society
London
Contents

KARNER, G. D., MANATSCHAL, G. & PINHEIRO, L. M. Imaging, mapping and modelling continental lithosphere extension and breakup: an introduction 1

The Iberia–Newfoundland continental extensional system (geological and geophysical constraints)

TUCHOLKE, B. E., SAWYER, D. S. & SIBUET, J.-C. Breakup of the Newfoundland–Iberia rift 9
HOPPER, J. R., FUNCK, T. & TUCHOLKE, B. E. Structure of the Flemish Cap margin, Newfoundland: insights into mantle and crustal processes during continental breakup 47
RESTON, T. J. The formation of non-volcanic rifted margins by the progressive extension of the lithosphere: the example of the West Iberian margin 77

The Iberia–Newfoundland continental extensional system (dynamic modelling)

HUISMANS, R. S. & BEAUMONT, C. Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins 111
BUROV, E. The role of gravitational instabilities, density structure and extension rate in the evolution of continental margins 139
HARRY, D. L. & GRANDELL, S. A dynamic model of rifting between Galicia Bank and Flemish Cap during the opening of the North Atlantic Ocean 157

The Iberia–Newfoundland continental extensional system (kinematic modelling)

EGAN, S. S. & MEREDITH, D. J. A kinematic modelling approach to lithosphere deformation and basin formation: application to the Black Sea 173
HEALY, D. & KUSZNIR, N. J. Early kinematic history of the Goban Spur rifted margin derived from a new model of continental breakup and sea-floor spreading initiation 199

Observational characteristics of non-Atlantic extensional systems (offshore)

GOODLIFE, A. M. & TAYLOR, B. The boundary between continental rifting and sea-floor spreading in the Woodlark Basin, Papua New Guinea 217
DIREEN, N. G., BORISSOVA, I., STAGG, H. M. J., COLWELL, J. B. & SYMONDS, P. A. Nature of the continent–ocean transition zone along the southern Australian continental margin: a comparison of the Naturaliste Plateau, SW Australia, and the central Great Australian Bight sectors 239

Observational characteristics of non-Atlantic extensional systems (onshore)

COCHRAN, J. R. & KARNER, G. D. Constraints on the deformation and rupturing of continental lithosphere of the Red Sea: the transition from rifting to drifting 265
MANATSCHAL, G., MÜNTENER, O., LAVIER, L. L., MINSHULL, T. A. & PéRON-PINVIDIC, G. Observations from the Alpine Tethys and Iberia–Newfoundland margins pertinent to the interpretation of continental breakup 291
ROBERTSON, A. H. F. Overview of tectonic settings related to the rifting and opening of Mesozoic ocean basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean regions 325

Revisiting fundamental concepts of continental extension

KUSZNIR, N. J. & KARNER, G. D. Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins 389
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRISTIE-BICK, N., ANDERS, M. H., WILLS, S., WALKER, C. D. & RENIK, B. Observations from the Basin and Range Province (western United States) pertinent to the interpretation of regional detachment faults</td>
<td>421</td>
</tr>
<tr>
<td>DYKSTERHUIS, S., REY, P., MÜLLER, R. D. & MORESI, L. Effects of initial weakness on rift architecture</td>
<td>443</td>
</tr>
<tr>
<td>MORESI, L., MÜHLHAUS, H.-B., LEMIALE, V. & MAY, D. Incompressible viscous formulations for deformation and yielding of the lithosphere</td>
<td>457</td>
</tr>
<tr>
<td>Index</td>
<td>473</td>
</tr>
</tbody>
</table>