Continuous Symmetry
From Euclid to Klein

William Barker
Roger Howe
Contents

Instructor Preface ix
Student Preface xiii
Acknowledgments xix

I. Foundations of Geometry in the Plane
 I.1. The Real Numbers 1
 I.2. The Incidence Axioms 6
 I.3. Distance and the Ruler Axiom 17
 I.4. Betweenness 22
 I.5. The Plane Separation Axiom 27
 I.6. The Angular Measure Axioms 34
 I.7. Triangles and the SAS Axiom 46
 I.8. Geometric Inequalities 56
 I.9. Parallelism 62
 I.10. The Parallel Postulate 70
 I.11. Directed Angle Measure and Ray Translation 84
 I.12. Similarity 94
 I.13. Circles 110
 I.14. Bolzano's Theorem 115
 I.15. Axioms for the Euclidean Plane 119

II. Isometries in the Plane: Products of Reflections
 II.1. Transformations in the Plane 121
 II.2. Isometries in the Plane 135
 II.3. Composition and Inversion 146
 II.4. Fixed Points and the First Structure Theorem 156
 II.5. Triangle Congruence and Isometries 161

III. Isometries in the Plane: Classification and Structure
 III.1. Two Reflections: Translations and Rotations 165
 III.2. Glide Reflections 181
 III.3. The Classification Theorem 188
 III.4. Orientation 191
 III.5. Groups of Transformations 199
 III.6. The Second Structure Theorem 206
 III.7. Rotation Angles 211
IV. Similarities in the Plane
 IV.1. Elementary Properties of Similarities 217
 IV.2. Dilations as Similarities 224
 IV.3. The Structure of Similarities 231
 IV.4. Orientation and Rotation Angles 235
 IV.5. Fixed Points for Similarities 240

V. Conjugacy and Geometric Equivalence
 V.1. Congruence and Geometric Equivalence 251
 V.2. Geometric Equivalence of Transformations: Conjugacy 256
 V.3. Geometric Equivalence under Similarities 266
 V.4. Euclidean Geometry Derived from Transformations 276

VI. Applications to Plane Geometry
 VI.1. Symmetry in Early Geometry 287
 VI.2. The Classical Coincidences 292
 VI.3. Dilation by Minus Two around the Centroid 298
 VI.4. Reflections, Light, and Distance 309
 VI.5. Fagnano's Problem and the Orthic Triangle 315
 VI.6. The Fermat Problem 322
 VI.7. The Circle of Apollonius 340

VII. Symmetric Figures in the Plane
 VII.1. Symmetry Groups 347
 VII.2. Invariant Sets and Orbits 356
 VII.3. Bounded Figures in the Plane 363

VIII. Frieze and Wallpaper Groups
 VIII.1. Point Groups and Translation Subgroups 376
 VIII.2. Frieze Groups 399
 VIII.3. Two-Dimensional Translation Lattices 416
 VIII.4. Wallpaper Groups 439

IX. Area, Volume, and Scaling
 IX.1. Length of Curves 459
 IX.2. Area of Polygonal Regions: Basic Properties 467
 IX.3. Area and Equidecomposability 482
 IX.4. Area by Approximation 487
 IX.5. Area and Similarity 505
 IX.6. Scaling and Dimension 520

 References 531
 Index 533