Twenty-Four Hours of Local Cohomology

Srikanth B. Iyengar
Graham J. Leuschke
Anton Leykin
Claudia Miller
Ezra Miller
Anurag K. Singh
Uli Walther

Graduate Studies in Mathematics
Volume 87
Contents

Preface xiii

Introduction xv

Lecture 1. Basic Notions 1
§1 Algebraic sets 1
§2 Krull dimension of a ring 3
§3 Dimension of an algebraic set 6
§4 An extended example 9
§5 Tangent spaces and regular rings 10
§6 Dimension of a module 12

Lecture 2 Cohomology 15
§1 Sheaves 16
§2 Čech cohomology 18
§3 Calculus versus topology 23
§4 Čech cohomology and derived functors 26

Lecture 3 Resolutions and Derived Functors 29
§1 Free, projective, and flat modules 29
§2 Complexes 32
§3 Resolutions 34
§4 Derived functors 36

Lecture 4 Limits 41
§1 An example from topology 41

vii
§2 Direct limits 42
§3 The category of diagrams 44
§4 Exactness 45
§5 Diagrams over diagrams 48
§6 Filtered posets 49
§7 Diagrams over the pushout poset 52
§8 Inverse limits 53

Lecture 5 Grading, Filtrations, and Grobner Bases 55
§1 Filtrations and associated graded rings 55
§2 Hilbert polynomials 57
§3 Monomial orders and initial forms 59
§4 Weight vectors and flat families 61
§5 Buchberger’s algorithm 62
§6 Grobner bases and syzygies 65

Lecture 6 Complexes from a Sequence of Ring Elements 67
§1 The Koszul complex 67
§2 Regular sequences and depth a first look 69
§3 Back to the Koszul complex 70
§4 The Čech complex 73

Lecture 7 Local Cohomology 77
§1 The torsion functor 77
§2 Direct limit of Ext modules 80
§3 Direct limit of Koszul cohomology 81
§4 Return of the Čech complex 84

Lecture 8 Auslander-Buchsbaum Formula and Global Dimension 87
§1. Regular sequences and depth redux 87
§2. Global dimension 89
§3. Auslander-Buchsbaum formula 91
§4 Regular local rings 92
§5 Complete local rings 96

Lecture 9. Depth and Cohomological Dimension 97
§1 Depth 97
§2. Cohomological dimension 100
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§3 Arithmetic rank</td>
<td>101</td>
</tr>
<tr>
<td>Lecture 10 Cohen-Macaulay Rings</td>
<td>105</td>
</tr>
<tr>
<td>§1 Noether normalization</td>
<td>106</td>
</tr>
<tr>
<td>§2 Intersection multiplicities</td>
<td>108</td>
</tr>
<tr>
<td>§3 Invariant theory</td>
<td>110</td>
</tr>
<tr>
<td>§4 Local cohomology</td>
<td>115</td>
</tr>
<tr>
<td>Lecture 11 Gorenstein Rings</td>
<td>117</td>
</tr>
<tr>
<td>§1 Bass numbers</td>
<td>118</td>
</tr>
<tr>
<td>§2 Recognizing Gorenstein rings</td>
<td>120</td>
</tr>
<tr>
<td>§3 Injective resolutions of Gorenstein rings</td>
<td>123</td>
</tr>
<tr>
<td>§4 Local duality</td>
<td>123</td>
</tr>
<tr>
<td>§5 Canonical modules</td>
<td>126</td>
</tr>
<tr>
<td>Lecture 12 Connections with Sheaf Cohomology</td>
<td>131</td>
</tr>
<tr>
<td>§1 Sheaf theory</td>
<td>131</td>
</tr>
<tr>
<td>§2 Flasque sheaves</td>
<td>137</td>
</tr>
<tr>
<td>§3 Local cohomology and sheaf cohomology</td>
<td>139</td>
</tr>
<tr>
<td>Lecture 13 Projective Varieties</td>
<td>141</td>
</tr>
<tr>
<td>§1 Graded local cohomology</td>
<td>141</td>
</tr>
<tr>
<td>§2 Sheaves on projective varieties</td>
<td>142</td>
</tr>
<tr>
<td>§3 Global sections and cohomology</td>
<td>144</td>
</tr>
<tr>
<td>Lecture 14 The Hartshorne-Lichtenbaum Vanishing Theorem</td>
<td>147</td>
</tr>
<tr>
<td>Lecture 15 Connectedness</td>
<td>153</td>
</tr>
<tr>
<td>§1 Mayer-Vietoris sequence</td>
<td>153</td>
</tr>
<tr>
<td>§2 Punctured spectra</td>
<td>154</td>
</tr>
<tr>
<td>Lecture 16 Polyhedral Applications</td>
<td>159</td>
</tr>
<tr>
<td>§1 Polytopes and faces</td>
<td>159</td>
</tr>
<tr>
<td>§2 Upper bound theorem</td>
<td>161</td>
</tr>
<tr>
<td>§3 The h-vector of a simplicial complex</td>
<td>163</td>
</tr>
<tr>
<td>§4 Stanley-Reisner rings</td>
<td>164</td>
</tr>
<tr>
<td>§5 Local cohomology of Stanley-Reisner rings</td>
<td>166</td>
</tr>
<tr>
<td>§6 Proof of the upper bound theorem</td>
<td>168</td>
</tr>
<tr>
<td>Lecture 17 D-modules</td>
<td>171</td>
</tr>
</tbody>
</table>
§1 Rings of differential operators 171
§2 The Weyl algebra 173
§3 Holonomic modules 176
§4 Grobner bases 177

Lecture 18 Local Duality Revisited 179
§1 Poincaré duality 179
§2 Grothendieck duality 180
§3 Local duality 181
§4 Global canonical modules 183

Lecture 19 De Rham Cohomology 191
§1 The real case, de Rham's theorem 192
§2 Complex manifolds 195
§3 The algebraic case 198
§4 Local and de Rham cohomology 200

Lecture 20 Local Cohomology over Semigroup Rings 203
§1 Semigroup rings 203
§2 Cones from semigroups 205
§3 Maximal support the Ishida complex 207
§4 Monomial support. \(\mathbb{Z}^d \)-graded injectives 211
§5 Hartshorne's example 213

Lecture 21 The Frobenius Endomorphism 217
§1 Homological properties 217
§2 Frobenius action on local cohomology modules 221
§3 A vanishing theorem 225

Lecture 22 Curious Examples 229
§1 Dependence on characteristic 229
§2 Associated primes of local cohomology modules 233

Lecture 23 Algorithmic Aspects of Local Cohomology 239
§1 Holonomicity of localization 239
§2 Local cohomology as a \(D \)-module 241
§3 Bernstein-Sato polynomials 242
§4 Computing with the Frobenius morphism 246

Lecture 24 Holonomic Rank and Hypergeometric Systems 247