Theory of Elastic Waves

Gerhard Müller

Editors

Michael Weber - GFZ & Universität Potsdam
Georg Rümpker - Universität Frankfurt
Dirk Gajewski - Universität Hamburg
Germany
Contents

1 Literature 9

2 Foundations of elasticity theory 11
 2.1 Analysis of strain 12
 2.2 Analysis of stress 21
 2.3 Equilibrium conditions 23
 2.4 Stress-strain relations 26
 2.5 Equation of motion, boundary and initial 31
 2.6 Displacement potentials and wave types 34

3 Body waves 39
 3.1 Plane body waves 39
 3.2 The initial value problem for plane waves 40
 3.3 Simple boundary value problems for plane waves 43
 3.4 Spherical waves from explosion point sources 45
 3.5 Spherical waves from single force and dipole 49
 3.5.1 Single force point source 49
 3.5.2 Dipole point sources 56
 3.6 Reflection and refraction of plane waves 62
 3.6.1 Plane waves with arbitrary propagation direction 62
 3.6.2 Basic equations 63
 3.6.3 Reflection and refraction of SH-waves 66
 3.6.4 Reflection of P-waves at a free surface 76
3.6.5 Reflection and refraction coefficients for layered media 84

3.7 Reflectivity method: Reflection of 92
3.7.1 Theory 92
3.7.2 Reflection and head waves 95
3.7.3 Complete seismograms 97

3.8 Exact or generalised ray theory - GRT 98
3.8.1 Incident cylindrical wave 99
3.8.2 Wavefront approximation for \(U_R \) 102
3.8.3 Reflection and refraction of the cylindrical wave 103
3.8.4 Discussion of reflected wave types 110

3.9 Ray seismics in continuous inhomogeneous media 113
3.9.1 Fermat's principle and the ray equation 114
3.9.2 High frequency approximation of the equation of motion 119
3.9.3 Eikonal equation and seismic rays 121
3.9.4 Amplitudes in ray seismic approximation 123

3.10 WKBJ method 126
3.10.1 Harmonic excitation and reflection coefficient 126
3.10.2 Impulsive excitation and WKBJ-seismograms 131

4 Surface waves 135
4.1 Free surface waves in layered media 135
4.1.1 Basic equations 135
4.1.2 Rayleigh waves at the surface of an homogeneous half-space 138
4.1.3 Love waves at the surface of a layered half-space 142
4.1.4 Determination of the phase velocity of surface waves from observations 150
4.1.5 The group velocity 153
4.1.6 Description of surface waves by constructive interference of body waves 157

4.2 Surface waves from point sources 160
4.2.1 Ideal wave guide for harmonic excitation 160
4.2.2 The modal seismogram of the ideal wave guide 167
4.2.3 Computation of modal seismograms with the method of stationary phase 170
4.2.4 Ray representation of the field in an ideal wave guide 173
CONTENTS

A Laplace transform and delta function 179
A.1 Introduction to the Laplace transform 179
 A.1.1 Literature 179
 A.1.2 Definition of the Laplace transform 179
 A.1.3 Assumptions on $F(t)$ 180
 A.1.4 Examples 180
 A.1.5 Properties of the Laplace transform 181
 A.1.6 Back-transform 183
 A.1.7 Relation with the Fourier transform 184
A.2 Application of the Laplace transform 184
 A.2.1 Linear ordinary differential equations with constant coefficients 184
 A.2.2 Partial differential equations 192
A.3 The delta function $\delta(t)$ 194
 A.3.1 Introduction of $\delta(t)$ 194
 A.3.2 Properties of $\delta(t)$ 197
 A.3.3 Application of $\delta(t)$ 200
 A.3.4 Duhamel's law and linear systems 202
 A.3.5 Practical approach for the consideration of non-zero initial values of the perturbation function $F(t)$ of a linear problem 205

B Hilbert transform 209
B.1 The Hilbert transform pair 209
B.2 The Hilbert transform as a filter 210

C Bessel functions 215

D The Sommerfeld integral 219

E The computation of modal seismograms 221
 E.1 Numerical calculations 221
 E.2 Method of stationary phase 222
 E.3 Airy phases 224

Index 226