Ricci Flow and the Poincaré Conjecture

JOHN MORGAN
GANG TIAN
Contents

Introduction
1. Overview of Perelman’s argument x
2. Background material from Riemannian geometry xvi
3. Background material from Ricci flow xix
4. Perelman’s advances xxv
5. The standard solution and the surgery process xxxi
6. Extending Ricci flows with surgery xxxiv
7. Finite-time extinction xxxvii
8. Acknowledgements xl
9. List of related papers xlii

Part 1. Background from Riemannian Geometry and Ricci flow 1

Chapter 1. Preliminaries from Riemannian geometry 3
1. Riemannian metrics and the Levi-Civita connection 3
2. Curvature of a Riemannian manifold 5
3. Geodesics and the exponential map 10
4. Computations in Gaussian normal coordinates 16
5. Basic curvature comparison results 18
6. Local volume and the injectivity radius 19

Chapter 2. Manifolds of non-negative curvature 21
1. Busemann functions 21
2. Comparison results in non-negative curvature 23
3. The soul theorem 24
4. Ends of a manifold 27
5. The splitting theorem 28
6. ε-necks 30
7. Forward difference quotients 33

Chapter 3. Basics of Ricci flow 35
1. The definition of Ricci flow 35
2. Some exact solutions to the Ricci flow 36
3. Local existence and uniqueness 39
4. Evolution of curvatures 41
5. Curvature evolution in an evolving orthonormal frame 42
6. Variation of distance under Ricci flow 45
7. Shi’s derivative estimates 50
8. Generalized Ricci flows 59

Chapter 4. The maximum principle 63
1. Maximum principle for scalar curvature 63
2. The maximum principle for tensors 65
3. Applications of the maximum principle 67
4. The strong maximum principle for curvature 69
5. Pinching toward positive curvature 75

Chapter 5. Convergence results for Ricci flow 83
1. Geometric convergence of Riemannian manifolds 83
2. Geometric convergence of Ricci flows 90
3. Gromov-Hausdorff convergence 92
4. Blow-up limits 99
5. Splitting limits at infinity 100

Part 2. Perelman’s length function and its applications 103

Chapter 6. A comparison geometry approach to the Ricci flow 105
1. \mathcal{L}-length and \mathcal{L}-geodesics 105
2. The \mathcal{L}-exponential map and its first-order properties 112
3. Minimizing \mathcal{L}-geodesics and the injectivity domain 116
4. Second-order differential inequalities for $\bar{L}_t^\mathcal{F}$ and $L_x^\mathcal{F}$ 119
5. Reduced length 129
6. Local Lipschitz estimates for l_x 133
7. Reduced volume 140

Chapter 7. Complete Ricci flows of bounded curvature 149
1. The functions L_x and l_x 149
2. A bound for min $l_x^\mathcal{F}$ 152
3. Reduced volume 164

Chapter 8. Non-collapsed results 169
1. A non-collapsing result for generalized Ricci flows 169
2. Application to compact Ricci flows 176

Chapter 9. κ-non-collapsed ancient solutions 179
1. Preliminaries 179
2. The asymptotic gradient shrinking soliton for κ-solutions 183
3. Splitting results at infinity 203
4. Classification of gradient shrinking solitons 206
5. Universal κ 220
6. Asymptotic volume 221
CONTENTS

7. Compactness of the space of 3-dimensional κ-solutions 225
8. Qualitative description of κ-solutions 230

Chapter 10. Bounded curvature at bounded distance 245
1. Pinching toward positive: the definitions 245
2. The statement of the theorem 245
3. The incomplete geometric limit 247
4. Cone limits near the end \mathcal{E} for rescalings of U_{∞} 255
5. Comparison of the two types of limits 263
6. The final contradiction 265

Chapter 11. Geometric limits of generalized Ricci flows 267
1. A smooth blow-up limit defined for a small time 267
2. Long-time blow-up limits 271
3. Incomplete smooth limits at singular times 279
4. Existence of strong δ-necks sufficiently deep in a 2ε-horn 287

Chapter 12. The standard solution 293
1. The initial metric 293
2. Standard Ricci flows: The statement 295
3. Existence of a standard flow 296
4. Completeness, positive curvature, and asymptotic behavior 297
5. Standard solutions are rotationally symmetric 300
6. Uniqueness 306
7. Solution of the harmonic map flow 308
8. Completion of the proof of uniqueness 322
9. Some corollaries 325

Part 3. Ricci flow with surgery 329

Chapter 13. Surgery on a δ-neck 331
1. Notation and the statement of the result 331
2. Preliminary computations 334
3. The proof of Theorem 13.2 339
4. Other properties of the result of surgery 341

Chapter 14. Ricci Flow with surgery: the definition 343
1. Surgery space-time 343
2. The generalized Ricci flow equation 348

Chapter 15. Controlled Ricci flows with surgery 353
1. Gluing together evolving necks 353
2. Topological consequences of Assumptions (1) – (7) 356
3. Further conditions on surgery 359
4. The process of surgery 361
5. Statements about the existence of Ricci flow with surgery 362
6. Outline of the proof of Theorem 15.9

Chapter 16. Proof of non-collapsing
1. The statement of the non-collapsing result
2. The proof of non-collapsing when $R(x) = r^{-2}$ with $r \leq r_{i+1}$
3. Minimizing \mathcal{L}-geodesics exist when $R(x) \leq r_{i+1}^{-2}$: the statement
4. Evolution of neighborhoods of surgery caps
5. A length estimate
6. Completion of the proof of Proposition 16.1

Chapter 17. Completion of the proof of Theorem 15.9
1. Proof of the strong canonical neighborhood assumption
2. Surgery times don’t accumulate

Part 4. Completion of the proof of the Poincaré Conjecture

Chapter 18. Finite-time extinction
1. The result
2. Disappearance of components with non-trivial π_2
3. Components with non-trivial π_3
4. First steps in the proof of Proposition 18.18

Chapter 19. Completion of the Proof of Proposition 18.24
1. Curve-shrinking
2. Basic estimates for curve-shrinking
3. Ramp solutions in $M \times S^1$
4. Approximating the original family Γ
5. The case of a single $c \in S^2$
6. The completion of the proof of Proposition 18.24
7. Proof of Lemma 19.31: annuli of small area
8. Proof of the first inequality in Lemma 19.24

Appendix. 3-manifolds covered by canonical neighborhoods
1. Shortening curves
2. The geometry of an ϵ-neck
3. Overlapping ϵ-necks
4. Regions covered by ϵ-necks and (C, ϵ)-caps
5. Subsets of the union of cores of (C, ϵ)-caps and ϵ-necks.

Bibliography

Index