Dmitry Kozlov

Combinatorial Algebraic Topology

With 115 Figures and 1 Table

Springer
Contents

1. **Overture**

Part I Concepts of Algebraic Topology

2. **Cell Complexes**
 2.1 Abstract Simplicial Complexes
 2.1.1 Definition of Abstract Simplicial Complexes and Maps Between Them
 2.1.2 Deletion, Link, Star, and Wedge
 2.1.3 Simplicial Join
 2.1.4 Face Posets
 2.1.5 Barycentric and Stellar Subdivisions
 2.1.6 Pulling and Pushing Simplicial Structures
 2.2 Polyhedral Complexes
 2.2.1 Geometry of Abstract Simplicial Complexes
 2.2.2 Geometric Meaning of the Combinatorial Constructions
 2.2.3 Geometric Simplicial Complexes
 2.2.4 Complexes Whose Cells Belong to a Specified Set of Polyhedra
 2.3 Trisps
 2.3.1 Construction Using the Gluing Data
 2.3.2 Constructions Involving Trisps
 2.4 CW Complexes
 2.4.1 Gluing Along a Map
 2.4.2 Constructive and Intrinsic Definitions
 2.4.3 Properties and Examples

3. **Homology Groups**
 3.1 Betti Numbers of Finite Abstract Simplicial Complexes
 3.2 Simplicial Homology Groups
3.2.1 Homology Groups of Trisps with Coefficients in \mathbb{Z}_2 39
3.2.2 Orientations 41
3.2.3 Homology Groups of Trisps with Integer Coefficients 41
3.3 Invariants Connected to Homology Groups.
3.3.1 Betti Numbers and Torsion Coefficients 44
3.3.2 Euler Characteristic and the Euler–Poincaré Formula 45
3.4 Variations
3.4.1 Augmentation and Reduced Homology Groups 46
3.4.2 Homology Groups with Other Coefficients 47
3.4.3 Simplicial Cohomology Groups 47
3.4.4 Singular Homology 49
3.5 Chain Complexes
3.5.1 Definition and Homology of Chain Complexes 51
3.5.2 Maps Between Chain Complexes and Induced Maps on Homology 52
3.5.3 Chain Homotopy 53
3.5.4 Simplicial Homology and Cohomology in the Context of Chain Complexes 54
3.5.5 Homomorphisms on Homology Induced by Trisp Maps 54
3.6 Cellular Homology
3.6.1 An Application of Homology with Integer Coefficients Winding Number 56
3.6.2 The Definition of Cellular Homology 57
3.6.3 Cellular Maps and Properties of Cellular Homology 58

4 Concepts of Category Theory
4.1 The Notion of a Category
4.1.1 Definition of a Category, Isomorphisms 59
4.1.2 Examples of Categories 60
4.2 Some Structure Theory of Categories
4.2.1 Initial and Terminal Objects 63
4.2.2 Products and Coproducts 64
4.3 Functors
4.3.1 The Category \mathbf{Cat} 68
4.3.2 Homology and Cohomology Viewed as Functors 70
4.3.3 Group Actions as Functors 70
4.4 Limit Constructions
4.4.1 Definition of Colimit of a Functor 71
4.4.2 Colimits and Infinite Unions 72
4.4.3 Quotients of Group Actions as Colimits 73
4.4.4 Limits 74
4.5 Comma Categories
4.5.1 Objects Below and Above Other Objects 74
4.5.2 The General Construction and Further Examples 75
5 **Exact Sequences** 77
 5 1 Some Structure Theory of Long and Short Exact Sequences 77
 5 1 1 Construction of the Connecting Homomorphism 77
 5 1 2 Exact Sequences 79
 5 1 3 Deriving Long Exact Sequences from Short Ones 81
 5 2 The Long Exact Sequence of a Pair and Some Applications 82
 5 2 1 Relative Homology and the Associated Long Exact Sequence 82
 5 2 2 Applications 84
 5 3 Mayer–Vietoris Long Exact Sequence 85

6 **Homotopy** 89
 6 1 Homotopy of Maps 89
 6 2 Homotopy Type of Topological Spaces 90
 6 3 Mapping Cone and Mapping Cylinder 91
 6 4 Deformation Retracts and Collapses 93
 6 5 Simple Homotopy Type 95
 6 6 Homotopy Groups 96
 6 7 Connectivity and Hurewicz Theorems 97

7 **Cofibrations** 101
 7 1 Cofibrations and the Homotopy Extension Property 101
 7 2 NDR-Pairs 103
 7 3 Important Facts Involving Cofibrations 105
 7 4 The Relative Homotopy Equivalence 107

8 **Principal F-Bundles and Stiefel–Whitney Characteristic Classes** 111
 8 1 Locally Trivial Bundles 111
 8 1 1 Bundle Terminology 111
 8 1 2 Types of Bundles 112
 8 1 3 Bundle Maps 113
 8 2 Elements of the Principal Bundle Theory 114
 8 2 1 Principal Bundles and Spaces with a Free Group Action 114
 8 2 2 The Classifying Space of a Group 116
 8 2 3 Special Cohomology Elements 119
 8 2 4 \(\mathbb{Z}_2 \)-Spaces and the Definition of Stiefel–Whitney Classes 120
 8 3 Properties of Stiefel–Whitney Classes 122
 8 3 1 Borsuk–Ulam Theorem, Index, and Coincidence 122
 8 3 2 Stiefel–Whitney Height 123
 8 3 3 Higher Connectivity and Stiefel–Whitney Classes 123
 8 3 4 Combinatorial Construction of Stiefel–Whitney Classes 124
 8 4 Suggested Reading 125
Part II Methods of Combinatorial Algebraic Topology

9 Combinatorial Complexes Melange

9.1 Abstract Simplicial Complexes
 9.1.1 Simplicial Flag Complexes
 9.1.2 Order Complexes
 9.1.3 Complexes of Combinatorial Properties
 9.1.4 The Neighborhood and Lovász Complexes
 9.1.5 Complexes Arising from Matroids
 9.1.6 Geometric Complexes in Metric Spaces
 9.1.7 Combinatorial Presentation by Minimal Nonsimplices

9.2 Prodsimplicial Complexes
 9.2.1 Prodsimplicial Flag Complexes
 9.2.2 Complex of Complete Bipartite Subgraphs
 9.2.3 Hom Complexes
 9.2.4 General Complexes of Morphisms
 9.2.5 Discrete Configuration Spaces of Generalized Simplicial Complexes
 9.2.6 The Complex of Phylogenetic Trees

9.3 Regular Trisps

9.4 Chain Complexes

9.5 Bibliographic Notes

10 Acyclic Categories

10.1 Basics
 10.1.1 The Notion of Acyclic Category
 10.1.2 Linear Extensions of Acyclic Categories
 10.1.3 Induced Subcategories of Cat

10.2 The Regular Trisp of Composable Morphism Chains in an Acyclic Category
 10.2.1 Definition and First Examples
 10.2.2 Functoriality

10.3 Constructions
 10.3.1 Disjoint Union as a Coproduct
 10.3.2 Stacks of Acyclic Categories and Joins of Regular Trisps
 10.3.3 Links, Stars, and Deletions
 10.3.4 Lattices and Acyclic Categories
 10.3.5 Barycentric Subdivision and ∆-Functior

10.4 Intervals in Acyclic Categories
 10.4.1 Definition and First Properties
 10.4.2 Acyclic Category of Intervals and Its Structural Functor
 10.4.3 Topology of the Category of Intervals
Contents

10.5 Homeomorphisms Associated with the Direct Product
 Construction

10.5.1 Simplicial Subdivision of the Direct Product

10.5.2 Further Subdivisions

10.6 The Mobius Function

10.6.1 Mobius Function for Posets

10.6.2 Mobius Function for Acyclic Categories

10.7 Bibliographic Notes

11 Discrete Morse Theory

11.1 Discrete Morse Theory for Posets

11.1.1 Acyclic Matchings in Hasse Diagrams of Posets

11.1.2 Poset Maps with Small Fibers

11.1.3 Universal Object Associated to an Acyclic Matching

11.1.4 Poset Fibrations and the Patchwork Theorem

11.2 Discrete Morse Theory for CW Complexes

11.2.1 Attaching Cells to Homotopy Equivalent Spaces

11.2.2 The Main Theorem of Discrete Morse Theory for CW Complexes

11.2.3 Examples

11.3 Algebraic Morse Theory

11.3.1 Acyclic Matchings on Free Chain Complexes and the Morse Complex

11.3.2 The Main Theorem of Algebraic Morse Theory

11.3.3 An Example

11.4 Bibliographic Notes

12 Lexicographic Shellability

12.1 Shellability

12.1.1 The Basics

12.1.2 Shelling Induced Subcomplexes

12.1.3 Shelling Nerves of Acyclic Categories

12.2 Lexicographic Shellability

12.2.1 Labeling Edges as a Way to Order Chains

12.2.2 EL-Labeling

12.2.3 General Lexicographic Shellability

12.2.4 Lexicographic Shellability and Nerves of Acyclic Categories

12.3 Bibliographic Notes

13 Evasiveness and Closure Operators

13.1 Evasiveness

13.1.1 Evasiveness of Graph Properties

13.1.2 Evasiveness of Abstract Simplicial Complexes
XVI Contents

13 2 Closure Operators
 13 2 1 Collapsing Sequences Induced by Closure Operators 232
 13 2 2 Applications 234
 13 2 3 Monotone Poset Maps 236
 13 2 4 The Reduction Theorem and Implications 237
13 3 Further Facts About Nonevasiveness
 13 3 1 NE-Reduction and Collapses 238
 13 3 2 Nonevasiveness of Noncomplemented Lattices 240
13 4 Other Recursively Defined Classes of Complexes 242
13 5 Bibliographic Notes 243

14 Colimits and Quotients 245
 14 1 Quotients of Nerves of Acyclic Categories 245
 14 1 1 Desirable Properties of the Quotient Construction 245
 14 1 2 Quotients of Simplicial Actions 245
 14 2 Formalization of Group Actions and the Main Question 248
 14 2 1 Definition of the Quotient and Formulation of the Main Problem 248
 14 2 2 An Explicit Description of the Category C/G 249
 14 3 Conditions on Group Actions 250
 14 3 1 Outline of the Results and Surjectivity of the Canonical Map 250
 14 3 2 Condition for Injectivity of the Canonical Projection 251
 14 3 3 Conditions for the Canonical Projection to be an Isomorphism 252
 14 3 4 Conditions for the Categories to be Closed Under Taking Quotients 255
 14 4 Bibliographic Notes 257

15 Homotopy Colimits 259
 15 1 Diagrams over Trisps 259
 15 1 1 Diagrams and Colimits 259
 15 1 2 Arrow Pictures and Their Nerves 260
 15 2 Homotopy Colimits 262
 15 2 1 Definition and Some Examples 262
 15 2 2 Structural Maps Associated to Homotopy Colimits 263
 15 3 Deforming Homotopy Colimits 265
 15 4 Nerves of Coverings 266
 15 4 1 Nerve Diagram 266
 15 4 2 Projection Lemma 267
 15 4 3 Nerve Lemmas 269
 15 5 Gluing Spaces 271
 15 5 1 Gluing Lemma 271
 15 5 2 Quillen Lemma 272
 15 6 Bibliographic Notes 273
16 Spectral Sequences 275
 16 1 Filtrations 275
 16 2 Contriving Spectral Sequences 276
 16 2 1 The Objects to be Constructed 276
 16 2 2 The Actual Construction 278
 16 2 3 Questions of Convergence and Interpretation
 of the Answer 280
 16 2 4 An Example 280
 16 3 Maps Between Spectral Sequences 281
 16 4 Spectral Sequences and Nerves of Acyclic Categories 283
 16 4 1 A Class of Filtrations 283
 16 4 2 Mobius Function and Inequalities for Betti Numbers 285
 16 5 Bibliographic Notes 288

Part III Complexes of Graph Homomorphisms

17 Chromatic Numbers and the Kneser Conjecture 293
 17 1 The Chromatic Number of a Graph 293
 17 1 1 The Definition and Applications 293
 17 1 2 The Complexity of Computing the Chromatic Number 294
 17 1 3 The Hadwiger Conjecture 295
 17 2 State Graphs and the Variations of the Chromatic Number 298
 17 2 1 Complete Graphs as State Graphs 298
 17 2 2 Kneser Graphs as State Graphs and Fractional
 Chromatic Number 298
 17 2 3 The Circular Chromatic Number 300
 17 3 Kneser Conjecture and Lovász Test 301
 17 3 1 Formulation of the Kneser Conjecture 301
 17 3 2 The Properties of the Neighborhood Complex 302
 17 3 3 Lovász Test for Graph Colorings 303
 17 3 4 Simplicial and Cubical Complexes Associated
 to Kneser Graphs 304
 17 3 5 The Vertex-Critical Subgraphs of Kneser Graphs 306
 17 3 6 Chromatic Numbers of Kneser Hypergraphs 307
 17 4 Bibliographic Notes 307

18 Structural Theory of Morphism Complexes 309
 18 1 The Scope of Morphism Complexes 309
 18 1 1 The Morphism Complexes and the Prodsimplicial
 Flag Construction 309
 18 1 2 Universality 311
 18 2 Special Families of Hom Complexes 312
 18 2 1 Coloring Complexes of a Graph 312
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Complexes of Bipartite Subgraphs and Neighborhood Complexes</td>
<td>18.2.2</td>
</tr>
<tr>
<td>18</td>
<td>Functoriality of $\text{Hom}(-,-)$</td>
<td>18.3</td>
</tr>
<tr>
<td>18</td>
<td>Products, Compositions, and Hom Complexes</td>
<td>18.4</td>
</tr>
<tr>
<td>18</td>
<td>Folds</td>
<td>18.5</td>
</tr>
<tr>
<td>19</td>
<td>Characteristic Classes and Chromatic Numbers</td>
<td>19.1</td>
</tr>
<tr>
<td>19</td>
<td>Examples of Stiefel–Whitney Test Graphs</td>
<td>19.2</td>
</tr>
<tr>
<td>19</td>
<td>Homology Tests for Graph Colorings</td>
<td>19.3</td>
</tr>
<tr>
<td>20</td>
<td>Applications of Spectral Sequences to Hom Complexes</td>
<td>20.1</td>
</tr>
<tr>
<td>20</td>
<td>Setting up the Spectral Sequence</td>
<td>20.2</td>
</tr>
<tr>
<td>20</td>
<td>Encoding Cohomology Generators by Arc Pictures</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Contents

18 2 2 Complexes of Bipartite Subgraphs and Neighborhood Complexes . 313
18 3 Functoriality of $\text{Hom}(-,-)$ 315
18 3 1 Functoriality on the Right . 315
18 3 2 $\text{Aut}(G)$ Action on $\text{Hom}(T,G)$ 316
18 3 3 Functoriality on the Left 316
18 3 4 $\text{Aut}(T)$ Action on $\text{Hom}(T,G)$ 318
18 3 5 Commuting Relations 318
18 4 Products, Compositions, and Hom Complexes 320
18 4 1 Coproducts 320
18 4 2 Products 320
18 4 3 Composition of Hom Complexes 322
18 5 Folds 323
18 5 1 Definition and First Properties 323
18 5 2 Proof of the Folding Theorem 324
18 6 Bibliographic Notes 326
19 Characteristic Classes and Chromatic Numbers 327
19 1 Stiefel–Whitney Characteristic Classes and Test Graphs 327
19 1 1 Powers of Stiefel–Whitney Classes and Chromatic Numbers of Graphs 327
19 1 2 Stiefel–Whitney Test Graphs 328
19 2 Examples of Stiefel–Whitney Test Graphs 329
19 2 1 Complexes of Complete Multipartite Subgraphs 329
19 2 2 Odd Cycles as Stiefel–Whitney Test Graphs 334
19 3 Homology Tests for Graph Colorings 337
19 3 1 The Symmetrizer Operator and Related Structures 338
19 3 2 The Topological Rationale for the Tests 338
19 3 3 Homology Tests 340
19 3 4 Examples of Homology Tests with Different Test Graphs 341
19 4 Bibliographic Notes 346
20 Applications of Spectral Sequences to Hom Complexes 349
20 1 Hom_+ Construction 349
20 1 1 Various Definitions 349
20 1 2 Connection to Independence Complexes 351
20 1 3 The Support Map 352
20 1 4 An Example $\text{Hom}_+(C_m,K_n)$ 353
20 2 Setting up the Spectral Sequence 354
20 2 1 Filtration Induced by the Support Map 354
20 2 2 The 0th and the 1st Tableaux 355
20 2 3 The First Differential 355
20 3 Encoding Cohomology Generators by Arc Pictures 356
20 3 1 The Language of Arcs 356
20 3 2 The Corresponding Cohomology Generators 356
20 3 3 The First Reduction
20 4 Topology of the Torus Front Complexes
20 4 1 Reinterpretation of $H^*(A_i, d_1)$ Using a Family of Cubical Complexes $\{\Phi_{m,n,g}\}$
20 4 2 The Torus Front Interpretation
20 4 3 Grinding
20 4 4 Thin Fronts
20 4 5 The Implications for the Cohomology Groups of $\text{Hom}(C_m, K_n)$
20 5 Euler Characteristic Formula
20 6 Cohomology with Integer Coefficients
20 6 1 Fixing Orientations on Hom and Hom_+ Complexes
20 6 2 Signed Versions of Formulas for Generators $[\sigma^*_V]$
20 6 3 Completing the Calculation of the Second Tableau
20 6 4 Summary the Full Description of the Groups $\widetilde{H}^*(\text{Hom}(C_m, K_n), \mathbb{Z})$
20 7 Bibliographic Notes and Conclusion

References

Index