Strengthening Mechanisms in Crystal Plasticity

A. S. Argon

Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts

OXFORD UNIVERSITY PRESS
CONTENTS

List of Symbols

1 Structure of Crystalline Solids and the “Defect State”

1.1 Overview
1.2 Principal Crystal Structures of Interest
1.3 Small-Strain Elasticity in Crystals
 1.3.1 Hooke’s Law
 1.3.2 Orthorhombic Crystals
 1.3.3 Hexagonal Crystals
 1.3.4 Cubic Crystals
 1.3.5 Isotropic Materials
 1.3.6 Temperature and Strain Dependence of Elastic Response
1.4 Inelastic Deformation and the Role of Crystal Defects
1.5 Vacancies and Interstitials
1.6 Line Properties of Dislocations
 1.6.1 Topology and Stress Fields of Dislocations
 1.6.2 Line Energies of Dislocations
1.7 Planar Faults
References

Appendix: Dislocation Stress Fields in a Finite Cylinder

2 Kinematics and Kinetics of Crystal Plasticity

2.1 Overview
2.2 Kinematics of Inelastic Deformation
 2.2.1 Plasticity Resulting from Shear Transformations
 2.2.2 Plasticity Resulting from Dislocation Glide
 2.2.3 Lattice Rotations Accompanying Slip
2.3 Flexure and Motion of Dislocations under Stress
 2.3.1 Interaction of a Dislocation Line with an External Stress
 2.3.2 Interaction Energies of Dislocations with Stresses External to Them
 2.3.3 Interaction of a Dislocation with Free Surfaces and Inhomogeneities
 2.3.4 Line Tension of a Dislocation
CONTENTS

2.3.5 Uniformly Moving Dislocations and The Dislocation Mass 39
2.3.6 The Basic Differential Equation for a Moving Dislocation Line 40
2.3.7 The Multiplication of Dislocation Line Length 41
2.4 The Mechanical Threshold of Deformation 44
2.5 Elements of Thermally Activated Deformation 45
2.5.1 General Principles 45
2.5.2 Principal Activation Parameters for Crystal Plasticity 49
2.6 Selection of Slip Systems in Specific Crystal Structures 52
2.7 Dislocations in Close-packed Structures 54
2.7.1 Dissociation of Perfect Dislocations in FCC 54
2.7.2 The Thompson Tetrahedron and Other Partial Dislocations 57
2.7.3 The Burgers Vector/Material Displacement Rule 59
2.7.4 Dislocation Reactions and Sessile Locks 60
2.8 Plastic Deformation by Shear Transformations 62
2.8.1 Types of Transformation 62
2.8.2 Deformation Twinning 62
2.8.3 Stress-induced Martensitic Transformations 64
2.8.4 Kinking 66
References 68

3 Overview of Strengthening Mechanisms 70
3.1 Introduction 70
3.2 The Continuum Plasticity Approach to Strengthening Compared with the Dislocation Mechanics Approach 70
3.3 The Lattice Resistance 73
3.4 Solid-solution Strengthening 73
3.5 Precipitation Strengthening 74
3.6 Strengthening by Strain Hardening 76
3.7 Phenomena Associated with Strengthening mechanisms 77
References 77

4 The Lattice Resistance 78
4.1 Overview 78
4.2 Model of a Dislocation in a Discrete Lattice 78
4.2.1 The Peierls–Nabarro Model of an Edge Dislocation—Updated 78
4.2.2 The Stress to Move the Dislocation 81
4.3 Inception of Plastic Deformation 85
4.3.1 HCP and FCC Metals 85
4.3.2 BCC Metals 87
CONTENTS

4.4 Structure of the Cores of Screw Dislocations in BCC Metals 89
4.5 Temperature and Strain Rate Dependence of the Lattice Resistance in BCC Metals 94
 4.5.1 The Nature of Thermal Assistance over a Lattice Energy Barrier 94
 4.5.2 Lattice Potentials 98
 4.5.3 Shapes and Energies of Geometrical Kinks 99
 4.5.4 Double-kink Energy in Regime I 101
 4.5.5 Double-kink Energy in Regime II 102
4.6 The Plastic Strain Rate in BCC Metals 104
 4.6.1 The Preexponential Factor and the Net Shear Rate 104
 4.6.2 Temperature and Strain Rate Dependence of the Plastic Resistance 106
 4.6.3 Comparison of Theory with Experiments on BCC Transition Metals 108
4.7 The Lattice Resistance of Silicon 114
 4.7.1 Dislocations in Silicon 114
 4.7.2 Dislocation Mobility in Silicon 118
 4.7.3 Models of the Dislocation Core Structure in Silicon 119
 4.7.4 Model of Dislocation Motion 123
 4.7.5 Comparison of Models with Experiments 128
4.8 The Phonon Drag 132
 References 133

5 Solid-solution Strengthening 136
 5.1 Overview 136
 5.2 Forms of Interaction of Solute Atoms with Dislocations in FCC Metals 136
 5.2.1 Overview 136
 5.2.2 The Size Misfit Interaction 137
 5.2.3 The Modulus Misfit Interaction 139
 5.2.4 Combined Size and Modulus Misfit Interactions 141
 5.3 Forms of Sampling of the Solute Field by a Dislocation in an FCC Metal 145
 5.4 The Solid-solution Resistance of FCC Alloys 149
 5.4.1 The Athermal Resistance 149
 5.4.2 Thermally Assisted Advance of a Dislocation in a Field of Solute Atoms in an FCC Metal 151
 5.5 Comparison of Solid-solution-strengthening Models for FCC Metals with Experiments 153
 5.5.1 Overview of Experimental Information 153
 5.5.2 Peak Solute Interaction Forces 155
CONTENTS

5.5.3 Dependence of Flow Stress on Solute Concentration 156
5.5.4 Comparison of Temperature Dependence of CRSS between Experiments and Theoretical Models 157
5.5.5 Summary of Solid-solution Strengthening of FCC Alloys 159
5.5.6 The "Stress Equivalence" of the Solid-solution Resistance of FCC Alloys 159
5.5.7 The Plateau Resistance 163

5.6 Solid-solution Strengthening of BCC Metals by Substitutional Solute Atoms 163
5.6.1 Overview of Phenomena 163
5.6.2 Experimental Manifestations of BCC Solid-solution Alloy Systems 165

5.7 Interactions of Solute Atoms with Screw Dislocations in BCC Metals 166
5.7.1 Overview of Model of Interaction of Solute Atoms with Screw Dislocation Cores 166
5.7.2 Interaction of Solute Atoms with Screw Dislocation Cores 168
5.7.3 Binding Potential of Solutes to Screw Dislocation Cores 170

5.8 The Shear Resistance 172
5.8.1 The Athermal Resistance at the Plateau 172
5.8.2 Resistance Governed by Kink Mobility 173
5.8.3 Double-kink-nucleation-controlled Resistance 177
5.8.4 Combination of Resistances 180
5.8.5 The Strain Rate Dependence of the Flow Stress in the Plateau Range 181

5.9 Comparison of Model Results with Experiments 184
5.9.1 The Athermal Resistance at the Plateau 184
5.9.2 Kink-mobility-controlled Plastic Resistance 185
5.9.3 Double-kink-nucleation-controlled Resistance 187
5.9.4 Strain Rate Dependence of the Flow Stress in the Plateau Region, and Activation Volumes 189

References 191

6 Precipitation Strengthening 193
6.1 Overview 193
6.2 Formation of Second Phases in the Form of Precipitate Particles, Heterogeneous Domains, or other Lattice Defect Clusters 194
6.2.1 Discrete Precipitates 194
CONTENTS

6.2.2 Spinodal-decomposition Domains 198
6.2.3 Defect Clusters and Nanovoids 199

6.3 Sampling of Precipitates by Dislocations 200
6.3.1 Precipitate Shapes and Sizes 200
6.3.2 Two Forms of Interaction of Precipitates with Dislocations 201
6.3.3 Statistics of Sampling Random Point Obstacles in a Plane 202
6.3.4 Sampling Point Obstacles of Different Kinds 207
6.3.5 Sampling Obstacles of Finite Width 208
6.3.6 Precipitate Growth, Peak Aging, and Overaging 212
6.3.7 Thermally Assisted Motion of Dislocations through a Field of Penetrable Obstacles 213

6.4 Specific Mechanisms of Precipitation Strengthening 219
6.4.1 Overview 219
6.4.2 Chemical Strengthening, or Resistance to Interface Step Production in Shearing 220
6.4.3 Stacking-fault Strengthening 223
6.4.4 Atomic-order Strengthening 235
6.4.5 Size Misfit Strengthening (Coherency Strengthening) 247
6.4.6 Modulus Misfit Strengthening 256
6.4.7 The Orowan Resistance and Dispersion Strengthening 264
6.4.8 Strengthening by Spinodal-decomposition Microstructures 267
6.4.9 Precipitate-like Obstacles 271

References 279

7 Strain Hardening 283
7.1 Overview 283
7.2 Features of Deformation 284
7.2.1 Active Slip Systems in FCC Metals 284
7.2.2 Stress–Strain Curves 286
7.2.3 Slip Distributions 292
7.2.4 Dislocation Microstructures 294

7.3 Strain-hardening Models 306
7.3.1 Overview 306
7.3.2 Dislocation Intersections 307
7.3.3 Stage I Strain Hardening 312
7.3.4 Stage II Strain Hardening 317
7.3.5 Ingredients of Stage III Hardening 320
7.3.6 Components of Strain Hardening in Stage III 325
7.3.7 Recovery Processes in Stage III 330
7.3.8 Total Strain-hardening Rate in Stage III 334
7.3.9 Strain Hardening in Stage IV 336
7.3.10 Stage V Deformation with No Strain Hardening 340

7.4 Strain Hardening in Other Crystal Structures 340
References 340

8. Deformation Instabilities, Polycrystals, Flow in Metals with Nanostructure, Superposition of Strengthening Mechanisms, and Transition to Continuum Plasticity 344
8.1 Overview 344
8.2 Yield Phenomena 345
8.3 Balance between the Interplane and the Intraplane Resistances and the Mobile Dislocation Density 349
8.4 The Portevin–Le Chatelier Effect and Jerky Flow 351
8.5 Dynamic Overshoot at Low Temperatures 355
8.6 Plastic Deformation in Polycrystals 358
8.6.1 Plastic Resistance of Polycrystals 358
8.6.2 Evolution of Deformation Textures 360
8.7 Plastic Deformation in the Presence of Heterogeneities 364
8.7.1 Geometrically Necessary Dislocations 364
8.7.2 Rise in Flow Stress and Enhanced Strain-hardening-rate Effects of Geometrically Necessary Dislocations 364
8.8 Grain Boundary Strengthening 370
8.9 Plasticity in Metals with Nanoscale Microstructure 376
8.10 Superposition of Deformation Resistances 382
8.11 The Bauschinger Effect 386
8.12 Phenomenological Continuum Plasticity 388
8.12.1 Conditions of Plastic Flow in the Mathematical Theory of Plasticity 388
8.12.2 Transition from Dislocation Mechanics to Continuum Mechanics 389
References 391

Author Index 394
Subject Index 399