Contents

Introduction
0.1 What is Nuclear Physics?
0.2 This Book

Hadrons
1.1 Nucleons
1.2 Nuclear Forces
1.3 Pions
1.4 Antiparticles
1.5 Inversion and Parity
1.6 Isospin and Baryonic Number
1.7 Isospin Invariance
1.8 Magnetic Moment of the Nucleons
1.9 Strangeness and Hypercharge
1.10 Quantum Chromodynamics
1.11 Exercises

The Two-Nucleon System
2.1 Introduction
2.2 Electrostatic Multipoles
2.3 Magnetic Moment with Spin-orbit Coupling
2.4 Experimental Data for the Deuteron
2.5 A Square-well Model for the Deuteron
2.6 The Deuteron Wavefunction
 2.6.1 Angular momentum coupling
 2.6.2 Two particles of spin \(\frac{1}{2} \)
 2.6.3 Total wavefunction
The Nucleon-Nucleon Interaction

3.1 Introduction
3.2 Phenomenological Potentials
3.3 Local Potentials
 3.3.1 Nonlocal potential
3.4 Meson Exchange Potentials
 3.4.1 Yukawa and Van der Waals potentials
 3.4.2 Field theory picture
 3.4.3 Short range part of the NN interaction
 3.4.4 Chiral symmetry
 3.4.5 Generalized boson exchange
 3.4.6 Beyond boson exchange
3.5 Effective Field Theories
3.6 Exercises

General Properties of Nuclei

4.1 Introduction
4.2 Nuclear Radii
4.3 Binding Energies
4.4 Total Angular Momentum of the Nucleus
4.5 Multipole Moments
4.6 Magnetic Dipole Moment
4.7 Electric Quadrupole Moment
4.8 Excited States of Nuclei
4.9 Nuclear Stability
4.10 Exercises

Nuclear Models

5.1 Introduction
5.2 The Liquid Drop Model
5.3 The Fermi Gas Model
5.4 The Shell Model
5.5 Residual Interaction
5.6 Nuclear Vibrations 144
5.7 Nuclear Deformation 149
5.8 The Nilsson Model 150
5.9 The Rotational Model 153
5.10 Microscopic Theories 160
 5.10.1 Hartree-Fock theory 160
 5.10.2 The Skyrme interaction 162
 5.10.3 Relativistic mean field theory 164
5.11 Exercises 166

6 Radioactivity 170
6.1 Introduction 170
6.2 Multiple Decays—Decay Chain 171
6.3 Preparation of a Radioactive Sample 173
6.4 Secular Equilibrium 174
6.5 Natural Radioactive Series 174
6.6 Radiation Units 176
6.7 Radioactive Dating 177
6.8 Properties of Unstable States—Level Width 179
6.9 Transition Probability—Golden Rule 181
6.10 Exercises 183

7 Alpha-Decay 185
7.1 Introduction 185
7.2 Theory of α-Decay 185
7.3 Angular Momentum and Parity in α-Decay 191
7.4 Exercises 194

8 Beta-Decay 195
8.1 Introduction 195
8.2 Energy Released in β-Decay 196
8.3 Fermi Theory 197
8.4 The Decay Constant—The Log β Value 202
8.5 Gamow-Teller Transitions 204
8.6 Selection Rules 206
8.7 Parity Nonconservation in β-Decay 206
 8.7.1 Double β-Decay 211
8.8 Electron Capture 213
8.9 Exercises 215

9 Gamma-Decay 218
9.1 Introduction 218
9.2 Quantization of Electromagnetic Fields 218
 9.2.1 Fields and gauge invariance 218
 9.2.2 Normal modes 220
 9.2.3 Photons 221
9.3 Interaction of Radiation with Matter 224
 9.3.1 Radiation probability 227
 9.3.2 Long wavelength approximation 228
9.4 Quantum and Classical Transition Rates 235
9.5 Selection Rules 240
9.6 Estimate of the Disintegration Constants 241
9.7 Isomeric States 243
9.8 Internal Conversion 244
9.9 Resonant Absorption—The Mössbauer Effect 249
9.10 Exercises 255

10 Nuclear Reactions—I 258
 10.1 Introduction 258
 10.2 Conservation Laws 260
 10.3 Kinematics of Nuclear Reactions 261
 10.4 Scattering and Reaction Cross Sections 265
 10.5 Resonances 270
 10.6 Compound Nucleus 273
 10.7 Mean Free Path of a Nucleon in Nuclei 276
 10.8 Empirical Optical Potential 277
 10.9 Compound Nucleus Formation 282
 10.10 Compound Nucleus Decay 290
 10.11 Exercises 294

11 Nuclear Reactions—II 298
 11.1 Direct Reactions 298
 11.1.1 Theory of direct reactions 301
 11.2 Validation of the Shell Model 303
 11.3 Photonuclear Reactions 306
 11.3.1 Cross sections 307
 11.3.2 Sum rules 308
 11.3.3 Giant resonances 312
 11.4 Coulomb Excitation 315
 11.5 Fission 319
 11.6 Mass Distribution of Fission Fragments 321
 11.7 Neutrons Emitted in Fission 324
 11.8 Cross Sections for Fission 325
 11.9 Energy Distribution in Fission 327
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.10 Isomeric Fission</td>
<td>328</td>
</tr>
<tr>
<td>11.11 Exercises</td>
<td>331</td>
</tr>
<tr>
<td>12 Nuclear Astrophysics</td>
<td>334</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>334</td>
</tr>
<tr>
<td>12.2 Astronomical Observations</td>
<td>335</td>
</tr>
<tr>
<td>12.2.1 The Milky Way</td>
<td>335</td>
</tr>
<tr>
<td>12.2.2 Dark matter</td>
<td>336</td>
</tr>
<tr>
<td>12.2.3 Luminosity and Hubble’s law</td>
<td>337</td>
</tr>
<tr>
<td>12.3 The Big Bang</td>
<td>338</td>
</tr>
<tr>
<td>12.4 Stellar Evolution</td>
<td>341</td>
</tr>
<tr>
<td>12.4.1 Stars burn slowly</td>
<td>341</td>
</tr>
<tr>
<td>12.4.2 Gamow peak and astrophysical S-factor</td>
<td>342</td>
</tr>
<tr>
<td>12.5 The Sun</td>
<td>347</td>
</tr>
<tr>
<td>12.5.1 Deuterium formation</td>
<td>348</td>
</tr>
<tr>
<td>12.5.2 Deuterium burning</td>
<td>350</td>
</tr>
<tr>
<td>12.5.3 3He burning</td>
<td>351</td>
</tr>
<tr>
<td>12.5.4 Reactions involving 7Be</td>
<td>352</td>
</tr>
<tr>
<td>12.6 The CNO Cycle</td>
<td>354</td>
</tr>
<tr>
<td>12.6.1 Hot CNO and rp process</td>
<td>355</td>
</tr>
<tr>
<td>12.7 Helium Burning</td>
<td>357</td>
</tr>
<tr>
<td>12.8 Red Giants</td>
<td>360</td>
</tr>
<tr>
<td>12.9 Advanced Burning Stages</td>
<td>362</td>
</tr>
<tr>
<td>12.9.1 Carbon burning</td>
<td>362</td>
</tr>
<tr>
<td>12.9.2 Neon burning</td>
<td>364</td>
</tr>
<tr>
<td>12.9.3 Oxygen burning</td>
<td>365</td>
</tr>
<tr>
<td>12.9.4 Silicon burning</td>
<td>365</td>
</tr>
<tr>
<td>12.10 Synthesis of Heaviest Elements</td>
<td>367</td>
</tr>
<tr>
<td>12.11 White Dwarfs and Neutron Stars</td>
<td>368</td>
</tr>
<tr>
<td>12.12 Supernova Explosions</td>
<td>370</td>
</tr>
<tr>
<td>12.13 Nuclear Reaction Models</td>
<td>375</td>
</tr>
<tr>
<td>12.13.1 Microscopic models</td>
<td>375</td>
</tr>
<tr>
<td>12.13.2 Potential and DWBA models</td>
<td>376</td>
</tr>
<tr>
<td>12.13.3 Parameter fit</td>
<td>377</td>
</tr>
<tr>
<td>12.13.4 Statistical models</td>
<td>377</td>
</tr>
<tr>
<td>12.14 Exercises</td>
<td>379</td>
</tr>
<tr>
<td>13 Rare Nuclear Isotopes</td>
<td>385</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>385</td>
</tr>
<tr>
<td>13.2 Light Exotic Nuclei</td>
<td>388</td>
</tr>
<tr>
<td>13.2.1 Halo nuclei</td>
<td>390</td>
</tr>
<tr>
<td>13.2.2 Borromean nuclei</td>
<td>393</td>
</tr>
</tbody>
</table>
13.3 Superheavy Elements 395
13.4 Exercises 400

Appendix A Angular Momentum 401
A.1 Orbital Momentum 401
A.2 Spherical Functions 402
A.3 Generation of Rotations 402
A.4 Orbital Rotations 403
A.5 Spin 404
A.6 Ladder Operators 406
A.7 Angular Momentum Multiplets 409
A.8 Multiplets as Irreducible Representations 412
A.9 SU(2) Group and Spin $\frac{1}{2}$ 413
A.10 Properties of Spherical Harmonics 414
 A.10.1 Explicit derivation 414
 A.10.2 Legendre polynomials 415
 A.10.3 Completeness 416
 A.10.4 Spherical functions as matrix elements of finite rotations 417
 A.10.5 Addition theorem 417

Appendix B Angular Momentum Coupling 419
B.1 Tensor Operators 419
 B.1.1 Transformation of operators 419
 B.1.2 Scalars and vectors 420
 B.1.3 Tensors of rank 2 421
 B.1.4 Introduction to selection rules 422
B.2 Angular Momentum Coupling 423
 B.2.1 Two subsystems 423
 B.2.2 Decomposition of reducible representations 424
 B.2.3 Tensor operators and selection rules revisited 426
 B.2.4 Vector coupling of angular momenta 427
 B.2.5 Wigner-Eckart theorem 428
 B.2.6 Vector Model 429

Appendix C Symmetries 432
C.1 Time Reversal 432
C.2 Spin Transformation and Kramer's Theorem 433
C.3 Time-conjugate Orbits 435
C.4 Two-component Neutrino and Fundamental Symmetries 436
C.5 Charge Conjugation 437
C.6 Electric Dipole Moment 438
C.7 CPT-Invariance 439
Appendix D Relativistic Quantum Mechanics

D.1 Lagrangians
 D.1.1 Covariance
D.2 Electromagnetic Field
D.3 Relativistic Equations
 D.3.1 Particle at rest
 D.3.2 Covariant form: υ matrices
D.4 Probability and Current
D.5 Wavefunction Transformation
 D.5.1 Bilinear Covariants
 D.5.2 Parity
D.6 Plane Waves
 D.6.1 Summary of plane wave spinor properties
 D.6.2 Projection operators
D.7 Plane Wave Expansion
D.8 Electromagnetic Interaction
D.9 Pauli Equation
 D.9.1 Spin-orbit and Darwin terms

Appendix E Useful Constants and Conversion Factors

E.1 Constants
E.2 Masses
E.3 Conversion Factors

References

Index