AN INTRODUCTION TO
Many-Valued and Fuzzy Logic

SEMANTICS, ALGEBRAS, AND
DERIVATION SYSTEMS

Merrie Bergmann
Emerita, Smith College

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface ... xi
1 Introduction 1
 1.1 Issues of Vagueness 1
 1.2 Vagueness Defined 5
 1.3 The Problem of the Fringe 6
 1.4 Preview of the Rest of the Book ... 7
 1.5 History and Scope of Fuzzy Logic 8
 1.6 Tall People 10
 1.7 Exercises 10
2 Review of Classical Propositional Logic . 12
 2.1 The Language of Classical Propositional Logic 12
 2.2 Semantics of Classical Propositional Logic 13
 2.3 Normal Forms 18
 2.4 An Axiomatic Derivation System for Classical Propositional Logic 21
 2.5 Functional Completeness 32
 2.6 Decidability 35
 2.7 Exercises 36
3 Review of Classical First-Order Logic 39
 3.1 The Language of Classical First-Order Logic 39
 3.2 Semantics of Classical First-Order Logic 42
 3.3 An Axiomatic Derivation System for Classical First-Order Logic 49
 3.4 Exercises 55
4 Alternative Semantics for Truth-Values and Truth-Functions:
 Numeric Truth-Values and Abstract Algebras 57
 4.1 Numeric Truth-Values for Classical Logic 57
 4.2 Boolean Algebras and Classical Logic 59
 4.3 More Results about Boolean Algebras 63
 4.4 Exercises 69
5 Three-Valued Propositional Logics: Semantics 71
 5.1 Kleene's “Strong” Three-Valued Logic 71
 5.2 Łukasiewicz's Three-Valued Logic 76
 5.3 Bochvar's Three-Valued Logics 80
 5.4 Evaluating Three-Valued Systems; Quasi-Tautologies and Quasi-Contradictions 84
 5.5 Normal Forms 89
 5.6 Questions of Interdefinability between the Systems and Functional Completeness 90
 5.7 Łukasiewicz's System Expanded 94
 5.8 Exercises 96

6 Derivation Systems for Three-Valued Propositional Logic 100
 6.1 An Axiomatic System for Tautologies and Validity in Three-Valued Logic 100
 6.2 A Pavelka-Style Derivation System for L_3 114
 6.3 Exercises 126

7 Three-Valued First-Order Logics: Semantics 130
 7.1 A First-Order Generalization of L_3 130
 7.2 Quantifiers Based on the Other Three-Valued Systems 137
 7.3 Tautologies, Validity, and “Quasi-”Semantic Concepts 140
 7.4 Exercises 143

8 Derivation Systems for Three-Valued First-Order Logic 146
 8.1 An Axiomatic System for Tautologies and Validity in Three-Valued First-Order Logic 146
 8.2 A Pavelka-Style Derivation System for $L_3\forall$ 153
 8.3 Exercises 159

9 Alternative Semantics for Three-Valued Logic 161
 9.1 Numeric Truth-Values for Three-Valued Logic 161
 9.2 Abstract Algebras for L_3, K^5_3, B^1_3, B^C_3 163
 9.3 MV-Algebras 167
 9.4 Exercises 172

10 The Principle of Charity Reconsidered and a New Problem of the Fringe 174

11 Fuzzy Propositional Logics: Semantics 176
 11.1 Fuzzy Sets and Degrees of Truth 176
 11.2 Łukasiewicz Fuzzy Propositional Logic 178
 11.3 Tautologies, Contradictions, and Entailment in Fuzzy Logic 180
11.4 *N*-Tautologies, Degree-Entailment, and *N*-Degree-Entailment 183
11.5 Fuzzy Consequence 190
11.6 Fuzzy Generalizations of K^3_3, B^3_1, and B^E_3; the Expressive Power of FuzzyL_1 192
11.7 T-Norms, T-Conorms, and Implication in Fuzzy Logic 194
11.8 Gödel Fuzzy Propositional Logic 199
11.9 Product Fuzzy Propositional Logic 202
11.10 Fuzzy External Assertion and Negation 203
11.11 Exercises 206

12 Fuzzy Algebras ... 212
12.1 More on MV-Algebras 212
12.2 Residuated Lattices and BL-Algebras 214
12.3 Zero and Unit Projections in Algebraic Structures 219
12.4 Exercises 220

13 Derivation Systems for Fuzzy Propositional Logic 223
13.1 An Axiomatic System for Tautologies and Validity in FuzzyL_1 223
13.2 A Pavelka-Style Derivation System for FuzzyL_1 229
13.3 An Alternative Axiomatic System for Tautologies and Validity in FuzzyL_1, Based on BL-Algebras 245
13.4 An Axiomatic System for Tautologies and Validity in FuzzyG 249
13.5 An Axiomatic System for Tautologies and Validity in FuzzyP 252
13.6 Summary: Comparison of FuzzyL_1, FuzzyG, and FuzzyP and Their Derivation Systems 254
13.7 External Assertion Axioms 254
13.8 Exercises 256

14 Fuzzy First-Order Logics: Semantics 262
14.1 Fuzzy Interpretations 262
14.2 Łukasiewicz Fuzzy First-Order Logic 263
14.3 Tautologies and Other Semantic Concepts 266
14.4 Łukasiewicz Fuzzy Logic and the Problems of Vagueness 268
14.5 Gödel Fuzzy First-Order Logic 278
14.6 Product Fuzzy First-Order Logic 280
14.7 The Sorites Paradox: Comparison of FuzzyL_V, FuzzyG_V, and FuzzyP_V 282
14.8 Exercises 282

15 Derivation Systems for Fuzzy First-Order Logic 287
15.1 Axiomatic Systems for Fuzzy First-Order Logic: Overview 287
15.2 A Pavelka-Style Derivation System for FuzzyL_V 288
15.3 An Axiomatic Derivation System for FuzzyG_V 294
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4 Combining Fuzzy First-Order Logical Systems; External Assertion</td>
<td>297</td>
</tr>
<tr>
<td>15.5 Exercises</td>
<td>298</td>
</tr>
<tr>
<td>16 Extensions of Fuzziness</td>
<td>300</td>
</tr>
<tr>
<td>16.1 Fuzzy Qualifiers: Hedges</td>
<td>300</td>
</tr>
<tr>
<td>16.2 Fuzzy "Linguistic" Truth-Values</td>
<td>303</td>
</tr>
<tr>
<td>16.3 Other Fuzzy Extensions of Fuzzy Logic</td>
<td>305</td>
</tr>
<tr>
<td>16.4 Exercises</td>
<td>306</td>
</tr>
<tr>
<td>17 Fuzzy Membership Functions</td>
<td>309</td>
</tr>
<tr>
<td>17.1 Defining Membership Functions</td>
<td>309</td>
</tr>
<tr>
<td>17.2 Empirical Construction of Membership Functions</td>
<td>312</td>
</tr>
<tr>
<td>17.3 Logical Relevance?</td>
<td>313</td>
</tr>
<tr>
<td>17.4 Exercises</td>
<td>313</td>
</tr>
<tr>
<td>Appendix: Basics of Countability and Uncountability</td>
<td>315</td>
</tr>
<tr>
<td>Bibliography</td>
<td>321</td>
</tr>
<tr>
<td>Index</td>
<td>327</td>
</tr>
</tbody>
</table>