Contents

1 The dielectric permeability

1.1 How the electromagnetic field acts on dust 1
1.1.1 Electric field and magnetic induction 1
1.1.2 Electric polarization of the medium 2
1.1.3 Magnetic polarization of the medium 6
1.1.4 Free charges and polarization charges 7
1.1.5 The field equations ... 9
1.1.6 Waves in a dielectric medium 9
1.1.7 Energy dissipation of a grain in a variable field 12

1.2 The harmonic oscillator ... 13
1.2.1 The Lorentz model .. 14
1.2.2 Dissipation of energy .. 17
1.2.3 Dispersion relation of the dielectric permeability 18
1.2.4 The harmonic oscillator and light 20
1.2.5 Radiation damping .. 23
1.2.6 The cross section of an harmonic oscillator 24

1.3 Waves in a conducting medium 25
1.3.1 The dielectric permeability of a conductor 25
1.3.2 Conductivity and the Drude profile 27

2 How to evaluate grain cross sections 29
2.1 Defining cross sections .. 29
2.1.1 Cross section for scattering, absorption and extinction 29
2.1.2 Phase function and cross section for radiation pressure 31
2.1.3 Efficiencies, mass and volume coefficients 32
2.2 The optical theorem .. 32
2.2.1 The intensity of forward scattered light 33
2.2.2 The refractive index of a dusty medium 35
2.3 Mie theory for a sphere ... 37
2.3.1 The formalism .. 37
2.3.2 Scattered and absorbed power 38
2.4 Polarization and scattering 39
2.4.1 The amplitude scattering matrix 40
2.4.2 Angle-dependence of scattering 41
2.4.3 The polarization ellipse 41
2.4.4 Stokes parameters .. 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>The discrete dipole approximation</td>
<td>45</td>
</tr>
<tr>
<td>2.6</td>
<td>The Kramers-Kronig relations</td>
<td>47</td>
</tr>
<tr>
<td>2.6.1</td>
<td>The KK relation for the dielectric permeability</td>
<td>47</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Three corollaries of the KK relation</td>
<td>47</td>
</tr>
<tr>
<td>2.7</td>
<td>Composite grains</td>
<td>50</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Effective medium theories</td>
<td>50</td>
</tr>
<tr>
<td>2.7.2</td>
<td>The influence of grain size, ice and porosity</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Very small and very big particles</td>
<td>59</td>
</tr>
<tr>
<td>3.1</td>
<td>Tiny spheres</td>
<td>59</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Approximating the efficiencies</td>
<td>59</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Polarization and angle-dependent scattering</td>
<td>64</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Small-size effects beyond Mie theory</td>
<td>64</td>
</tr>
<tr>
<td>3.2</td>
<td>Tiny ellipsoids</td>
<td>65</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Cross section and shape factor of pancakes and cigars</td>
<td>66</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Randomly oriented ellipsoids</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>The fields inside a dielectric particle</td>
<td>70</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Internal field and depolarization field</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Depolarization field and surface charges</td>
<td>70</td>
</tr>
<tr>
<td>3.3.3</td>
<td>The local field at an atom</td>
<td>71</td>
</tr>
<tr>
<td>3.3.4</td>
<td>The relation of Clausius-Mossotti</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>Very large particles</td>
<td>73</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Babinet's theorem</td>
<td>73</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Reflection and transmission at a plane surface</td>
<td>75</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Huygens' principle</td>
<td>77</td>
</tr>
<tr>
<td>3.5</td>
<td>Grains of small refractive index</td>
<td>80</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Rayleigh Gans particles</td>
<td>80</td>
</tr>
<tr>
<td>3.5.2</td>
<td>X-ray scattering</td>
<td>81</td>
</tr>
<tr>
<td>3.5.3</td>
<td>X-ray absorption</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>Case studies of Mie calculus</td>
<td>85</td>
</tr>
<tr>
<td>4.1</td>
<td>Efficiencies of bare spheres</td>
<td>85</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Scattering and absorption</td>
<td>85</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Efficiency vs. cross section and volume coefficient</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Scattering by bare spheres</td>
<td>92</td>
</tr>
<tr>
<td>4.2.1</td>
<td>The intensity pattern of scattered light</td>
<td>92</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The polarization of scattered light</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Linear polarization through extinction</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>Coated spheres</td>
<td>97</td>
</tr>
<tr>
<td>4.5</td>
<td>Surface modes in small grains</td>
<td>99</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Small graphite spheres</td>
<td>99</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Ellipsoids and metals</td>
<td>100</td>
</tr>
</tbody>
</table>
5 Structure and composition of dust 101
 5.1 Crystal structure ... 101
 5.1.1 Translational symmetry 101
 5.1.2 Lattice types .. 102
 5.1.3 The reciprocal lattice 105
 5.2 Binding in crystals .. 107
 5.2.1 Covalent and ionic bonding 107
 5.2.2 Metals .. 108
 5.2.3 van der Waals forces and hydrogen bridges 110
 5.3 Carbonaceous grains and silicate grains 111
 5.3.1 Origin of the two major dust constituents 111
 5.3.2 The bonding in carbon 112
 5.3.3 Carbon compounds 113
 5.3.4 Silicates ... 117
 5.3.5 The origin of the elements found in dust grains 120
 5.4 Optical constants of dust materials 121
 5.5 Grain sizes .. 128
 5.5.1 The MRN size distribution 128
 5.5.2 Collisional fragmentation 129

6 Dust radiation 131
 6.1 Kirchhoff's law ... 131
 6.1.1 The emissivity of dust 131
 6.1.2 Thermal emission of grains 132
 6.1.3 Absorption and emission in thermal equilibrium 133
 6.2 The temperature of big grains 134
 6.2.1 The energy equation 134
 6.2.2 Temperature estimates 135
 6.2.3 Relation between grain size and grain temperature .. 137
 6.2.4 Dust temperatures from observations 138
 6.3 The emission of big grains 140
 6.3.1 Constant temperature and low optical depth 140
 6.3.2 Total emission and cooling rate of a grain 143
 6.4 Calorific properties of solids 143
 6.4.1 Traveling waves in a crystal 145
 6.4.2 Internal energy of a grain 148
 6.4.3 The Debye temperature 149
 6.4.4 Specific heat ... 150
 6.4.5 Two-dimensional lattices 151
 6.5 Temperature fluctuations of very small grains 152
 6.5.1 The probability density $P(T)$ 153
 6.5.2 The transition matrix 153
 6.5.3 The stochastic time evolution of grain temperature ... 155
 6.6 The emission spectrum of very small grains 156
 6.6.1 Moderate fluctuations 156
7 Dust and its environment

7.1 Grain charge
- 7.1.1 Charge equilibrium in the absence of a UV field 161
- 7.1.2 The photoelectric effect 163

7.2 Grain motion
- 7.2.1 Random walk 167
- 7.2.2 The drag on a grain subjected to an outer force 167
- 7.2.3 Brownian motion of a grain 170

7.3 Dust in the solar system
- 7.3.1 Interplanetary dust 172
- 7.3.2 The Poynting-Robertson effect 173
- 7.3.3 Electromagnetic forces on grains: Dust from Io 174
- 7.3.4 Shooting stars and less belligerent meteoroids 176

7.4 Grain destruction
- 7.4.1 Mass balance of gas and dust in the Milky Way 181
- 7.4.2 Destruction processes 183

7.5 Grain formation
- 7.5.1 Evaporation temperature and vapor pressure 185
- 7.5.2 Vapor pressure of small grains 187
- 7.5.3 Critical saturation 189
- 7.5.4 Time-dependent homogeneous nucleation 190
- 7.5.5 Steady-state nucleation 191
- 7.5.6 Solutions to time-dependent homogeneous nucleation 195

8 Grain surfaces

8.1 Gas accretion on grains
- 8.1.1 Physical adsorption and chemisorption 202
- 8.1.2 The sticking probability 205

8.2 Mobility of atoms on grain surfaces
- 8.2.1 Thermal hopping 207
- 8.2.2 Evaporation 208
- 8.2.3 Tunneling 208
- 8.2.4 Photodesorption 209

8.3 Grain surface chemistry
- 8.3.1 Chemical reactions in the gas 210
- 8.3.2 Chemical reactions on dust 211
- 8.3.3 The formation of H$_2$ in diffuse clouds 214

8.4 Ice mantles 215
Table of Contents

9 PAHs and spectral features of dust 219
 9.1 Polycyclic Aromatic Hydrocarbons 219
 9.1.1 Microcanonic emission of PAHs 220
 9.1.2 An example: anthracene 221
 9.1.3 Photo-excitation of PAHs 224
 9.1.4 Cutoff wavelength for electronic excitation 225
 9.1.5 Photo-destruction and ionization 226
 9.1.6 Cross sections and line profiles of PAHs 227
 9.2 ERE and DIBs 229
 9.3 The silicate bands at 10\(\mu\)m and 18\(\mu\)m 230
 9.3.1 The strength of the resonances 230
 9.3.2 How the bands change with temperature and grain size 231
 9.4 Crystalline silicates 233
 9.4.1 Where they are found and how they form 233
 9.4.2 Thermal expansion of grains 234
 9.4.3 The frequency shift of a resonance in grain heating 236
 9.5 The feature at 3.4\(\mu\)m 237

10 Interstellar reddening and dust models 239
 10.1 Reddening by interstellar grains 239
 10.1.1 Stellar photometry 239
 10.1.2 The interstellar extinction curve 241
 10.1.3 Two-color-diagrams 245
 10.1.4 Spectral indices 246
 10.1.5 The mass absorption coefficient 246
 10.2 Dust models 249
 10.2.1 Description of the model components 250
 10.2.2 Extinction and scattering of the dust model 252
 10.2.3 Extinction and absorption mass coefficients 254

11 Radiative transport 259
 11.1 Basic transfer relations 259
 11.1.1 Definition of intensity, mean intensity and flux 259
 11.1.2 The general transfer equation 262
 11.1.3 Transfer equation in spherical and slab symmetry 264
 11.1.4 Frequency averages 266
 11.1.5 Analytical solutions to the transfer equation 267
 11.2 Spherical clouds 268
 11.2.1 Integral equations for the intensity 269
 11.2.2 Practical hints 270
 11.3 Passive disks 272
 11.3.1 Radiative transfer in a plane parallel layer 272
 11.3.2 Disks of high optical thickness 274
 11.3.3 The grazing angle 275
11.4 Galactic nuclei ... 278
11.4.1 Hot spots in a spherical stellar cluster 278
11.4.2 Low and high luminosity stars 279
11.5 The pursuit of random photons 281
11.5.1 The strategy .. 281
11.5.2 Grains with temperature fluctuations 284
11.5.3 Anisotropic scattering 286
11.5.4 Practical considerations 287

12 Spectral energy distribution of dusty objects 289
12.1 Early stages of star formation 289
12.1.1 Globules .. 289
12.1.2 Isothermal gravitationally-bound clumps 291
12.1.3 The density structure of a protostar 292
12.2 Accretion disks 296
12.2.1 Flat disks ... 296
12.2.2 Inflated disks 299
12.3 Reflection nebulae 302
12.4 Starburst nuclei 304
12.5 Mass loss giants 307
12.5.1 Flow equations 307
12.5.2 Solutions to the flow equations 310
12.6 The effective extinction curve 314
12.6.1 The effective optical thickness 314
12.6.2 Monte Carlo simulations 316

A Various dust related physics 319
A.1 Boltzmann statistics 319
A.1.1 The probability of an arbitrary energy distribution . 319
A.1.2 Partition function and population of energy cells 321
A.1.3 The mean energy of harmonic oscillators 323
A.1.4 The Maxwellian velocity distribution 323
A.2 Quantum statistics 325
A.2.1 The unit cell \hbar^3 of phase space 325
A.2.2 Bosons and fermions 326
A.3 Thermodynamics 328
A.3.1 The ergodic hypothesis 328
A.3.2 Definition of entropy and temperature 330
A.3.3 The canonical distribution 331
A.3.4 Thermodynamic relations 332
A.3.5 Equilibrium conditions of the state functions 335
A.4 Blackbody radiation 337
A.4.1 The Planck function 337
A.4.2 Low and high frequency limit 338
A.4.3 The laws of Wien and Stefan-Boltzmann 339