On Necessary and Sufficient Conditions for L^p-Estimates of Riesz Transforms Associated to Elliptic Operators on \mathbb{R}^n and Related Estimates

PascalAuscher
Contents

Acknowledgements ix
Introduction xi
Notation xvii

Chapter 1. Beyond Calderón-Zygmund operators 1

Chapter 2. Basic L^2 theory for elliptic operators 9
2.1. Definition 9
2.2. Holomorphic functional calculus on L^2 9
2.3. L^2 off-diagonal estimates 10
2.4. Square root 12
2.5. The conservation property 12

Chapter 3. L^p theory for the semigroup 15
3.1. Hypercontractivity and uniform boundedness 15
3.2. $W^{1,p}$ elliptic estimates and hypercontractivity 17
3.3. Gradient estimates 19
3.4. Summary 21
3.5. Sharpness issues 22
3.6. Analytic extension 22

Chapter 4. L^p theory for square roots 25
4.1. Riesz transforms on L^p 25
4.2. Reverse inequalities 32
4.3. Invertibility 36
4.4. Applications 37
4.5. Riesz transforms and Hodge decomposition 38

Chapter 5. Riesz transforms and functional calculi 41
5.1. Blunck & Kunstmann’s theorem 41
5.2. Hardy-Littlewood-Sobolev estimates 42
5.3. The Hardy-Littlewood-Sobolev-Kato diagram 44
5.4. More on the Kato diagram 47

Chapter 6. Square function estimates 51
6.1. Necessary and sufficient conditions for boundedness of vertical square functions 51
6.2. On inequalities of Stein and Fefferman for non-tangential square functions 60
CONTENTS

<table>
<thead>
<tr>
<th>Chapter 7. Miscellani</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Local theory</td>
<td>65</td>
</tr>
<tr>
<td>7.2. Higher order operators and systems</td>
<td>66</td>
</tr>
<tr>
<td>Appendix A. Calderón-Zygmund decomposition for Sobolev functions</td>
<td>69</td>
</tr>
<tr>
<td>Appendix. Bibliography</td>
<td>73</td>
</tr>
</tbody>
</table>