THE PHYSICS OF THE COSMIC MICROWAVE BACKGROUND

PAVEL D. NASELSKY
Niels Bohr Institute, Copenhagen and the Rostov State University

DMITRY I. NOVIKOV
Imperial College London and the P. N. Lebedev Physics Institute, Moscow

IGOR D. NOVIKOV
Niels Bohr Institute, Copenhagen and the P. N. Lebedev Physics Institute, Moscow

Translated by Nina Iskandarian and Vitaly Kisin
Contents

Preface to the Russian edition xi
Preface to the English edition xv

1 Observational foundations of modern cosmology 1
 1.1 Introduction 1
 1.2 Current status of knowledge about the spectrum of the CMB in the Universe 6
 1.3 The baryonic component of matter in the Universe 16

2 Kinetics of electromagnetic radiation in a uniform Universe 33
 2.1 Introduction 33
 2.2 Radiation transfer equation in the Universe 34
 2.3 The generalized Kompaneets equation 38
 2.4 Compton distortion of radiation spectrum on interaction with hot electrons 39
 2.5 Relativistic correction of the Zeldovich–Sunyaev effect 40
 2.6 The kinematic Zeldovich–Sunyaev effect 44
 2.7 Determination of H₀ from the distortion of the CMB spectrum and the data on x-ray luminosity of galaxy clusters 46
 2.8 Comptonization at large redshift 47

3 The ionization history of the Universe 53
 3.1 The inevitability of hydrogen recombination 53
 3.2 Standard model of hydrogen recombination 57
 3.3 The three-level approximation for the hydrogen atom 58
 3.4 Qualitative analysis of recombination modes 61
 3.5 Detailed theory of recombination: multilevel approximation 63
 3.6 Numerical analysis of recombination kinetics 68
 3.7 Spectral distortion of the CMB in the course of cosmological recombination 75
 3.8 The inevitability of hydrogen reionization 78
 3.9 Type of dark matter and detailed ionization balance 80
 3.10 Mechanisms of distortion of hydrogen recombination kinetics 88
 3.11 Recombination kinetics in the presence of ionization sources 90
Contents

4 Primordial CMB and small perturbations of uniform cosmological model

4.1 Radiation transfer in non-uniform medium 94
4.2 Classification of types of initial perturbations 96
4.3 Gauge invariance 100
4.4 Multicomponent medium: classification of the types of scalar perturbations 102
4.5 Newtonian theory of evolution of small perturbations 111
4.6 Relativistic theory of the evolution of perturbations in the expanding Universe 115
4.7 Sakharov modulations of the spectrum of density perturbations in the baryonic Universe 121
4.8 Sakharov oscillations: observation of correlations 127

5 Primary anisotropy of the cosmic microwave background

5.1 Introduction 129
5.2 The Sachs–Wolfe effect 131
5.3 The Silk and Doppler effects and the Sakharov oscillations of the CMB spectrum 147
5.4 $C(l)$ as a function of the parameters of the cosmological model 155

6 Primordial polarization of the cosmic microwave background

6.1 Introduction 163
6.2 Electric and magnetic components of the polarization field 168
6.3 Local and non-local descriptions of polarization 170
6.4 Geometric representation of the polarization field 173

7 Statistical properties of random fields of anisotropy and polarization in the CMB

7.1 Introduction 179
7.2 Spectral parameters of the Gaussian anisotropy field 180
7.3 Local topology of the random Gaussian anisotropy field: peak statistics 183
7.4 Signal structure in the neighbourhood of minima and maxima of the CMB anisotropy 187
7.5 Peak statistics on anisotropy maps 188
7.6 Clusterization of peaks on anisotropy maps 194
7.7 Minkowski functionals 197
7.8 Statistical nature of the signal in the BOOMERANG and MAXIMA-1 data 204
7.9 Simplest model of a non-Gaussian signal and its manifestation in Minkowski functionals 207
7.10 Topological features of the polarization field 211

8 The Wilkinson Microwave Anisotropy Probe (WMAP)

8.1 Mission and instrument 216
8.2 Scientific results 217