Contents

Preface
1 The wind from the Sun: an introduction
1.1 A brief history of ideas
1.1.1 Intermittent particle beams?
1.1.2 Permanent solar corpuscular emission?
1.1.3 The modern solar wind
1.2 Looking at the Sun
1.2.1 Basic solar properties
1.2.2 The solar spectrum
1.2.3 The solar disc
1.2.4 Sunspots, magnetic fields and the solar cycle
1.2.5 Around the Sun: chromosphere and corona
1.3 Observing the solar wind
1.3.1 Observing near the ecliptic
1.3.2 Exploring the third dimension with Ulysses
1.3.3 A simplified three-dimensional picture
References

2 Tool kit for space plasma physics
2.1 What is a plasma?
2.1.1 Gaseous plasma
2.1.2 Quasi-neutrality
2.1.3 Collisions of charged particles
2.1.4 Plasma oscillations
2.1.5 Non-classical plasmas
2.1.6 Summary
2.2 Dynamics of a charged particle
2.2.1 The key role of the magnetic field
2.2.2 Basic charge motion in constant and uniform fields
2.2.3 Non-uniform magnetic field
2.2.4 Adiabatic invariants
2.2.5 Summary
2.3 Many particles: from kinetics to magnetohydrodynamics
2.3.1 Elements of plasma kinetics
Contents

2.3.2 First-aid kit for space plasma fluids 72
2.3.3 Elements of magnetohydrodynamics 85
2.3.4 Waves and instabilities 96
2.3.5 Summary 100
2.4 Basic tools for ionisation.
2.4.1 Energy of ionisation and the size of the hydrogen atom 101
2.4.2 Ionisation by compressing or heating 102
2.4.3 Radiative ionisation and recombination 103
2.4.4 Non-radiative ionisation and recombination 105
2.5 Problems 107
2.5.1 Linear Debye shielding in a non-equilibrium plasma 107
2.5.2 Mean free path in a plasma 108
2.5.3 Particles trapped in a planetary magnetic field 108
2.5.4 Filtration of particles in the absence of equilibrium 109
2.5.5 Freezing of magnetic field lines 110
2.5.6 Alfvén wave 110
2.5.7 Why is the solar wind ionised? 110
References 110

3 Anatomy of the Sun

3.1 An (almost) ordinary star
3.1.1 Hydrostatic equilibrium of a large ball of plasma 114
3.1.2 Luminosity 116
3.1.3 Energy source and timescales 118
3.1.4 The mass of a normal star 121
3.2 Structure and dynamics 123
3.2.1 Modelling the solar interior 124
3.2.2 Convective instability 125
3.2.3 Convective energy transfer 128
3.2.4 The quiet photosphere 132
3.2.5 Solar rotation 135
3.3 Some guesses on solar magnetism 137
3.3.1 Elements of dynamo theory 138
3.3.2 Solar kinematic dynamos 142
3.3.3 Concentrating and expelling the magnetic field 145
3.3.4 Lorentz force restriction on dynamo action 148
3.3.5 Elementary physics of magnetic flux tubes 149
3.3.6 Surface magnetic field 154
3.4 Problems 158
3.4.1 Conductive heat transfer in the solar interior 158
3.4.2 Timescale for radiative transport 158
3.4.3 Solar differential rotation 158
3.4.4 Twisted magnetic flux tube 159
3.4.5 The heat flux blocked by sunspots 159
References 160
5.3 Energy balance
- 5.3.1 Energy balance
- 5.3.2 Polytrope approximation
- 5.3.3 Changing the geometry
- 5.3.4 Further pushing or heating the wind
- 5.3.5 What about viscosity?

5.4 A mixture of fluids
- 5.4.1 Simple balance equations
- 5.4.2 Observed proton and electron temperatures
- 5.4.3 The role of collisions
- 5.4.4 Heat flux
- 5.4.5 The electric field
- 5.4.6 Fluid picture balance sheet and refinements

5.5 Kinetic descriptions
- 5.5.1 Some notations
- 5.5.2 Observed proton and electron velocity distributions
- 5.5.3 Non-collisional electron heat flux
- 5.5.4 Exospheric models
- 5.5.5 Kinetic models with collisions and wave–particle interactions

5.6 Building a 'full' theory?
- 5.6.1 More and better observations (beware of hidden assumptions)
- 5.6.2 Difficult theoretical questions

5.7 Problems
- 5.7.1 Transonic flows in ducts: the de Laval nozzle
- 5.7.2 The hysteresis cycle of an isothermal flow
- 5.7.3 Spherical accretion by a star: the Bondi problem
- 5.7.4 A wind with polytrope protons and electrons
- 5.7.5 Playing with the kappa distribution
- 5.7.6 'Temperature' or 'temperatures'?
- 5.7.7 Non-collisional heat flux
- 5.7.8 An imaginary wind with charges of equal masses

5.8 Reference

6 Structure and perturbations
- 6.1 Basic large-scale magnetic field
 - 6.1.1 Parker's spiral
 - 6.1.2 Basic heliospheric current sheet and other currents
 - 6.1.3 Magnetic field effects on the wind
- 6.2 Three-dimensional structure during the solar cycle
 - 6.2.1 Warped heliospheric current sheet
 - 6.2.2 Observed large-scale structure
 - 6.2.3 Connecting the Sun and the solar wind, or: where do the fast and slow winds come from?
- 6.3 Major perturbations
 - 6.3.1 Interaction between the fast and slow winds
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>Problems</td>
<td></td>
</tr>
<tr>
<td>7.6.1</td>
<td>Electrostatic charging in space</td>
<td>409</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Magnetic pile-up</td>
<td>409</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Chapman-Ferraro layer</td>
<td>410</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Interaction of the solar wind with Venus and Mars</td>
<td>411</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Ring current</td>
<td>411</td>
</tr>
<tr>
<td>7.6.6</td>
<td>Does Vesta have a magnetosphere?</td>
<td>412</td>
</tr>
<tr>
<td>7.6.7</td>
<td>Gas–dust drag in a comet: another nozzle problem</td>
<td>412</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>413</td>
</tr>
</tbody>
</table>

8 The solar wind in the Universe 419

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>The frontier of the heliosphere</td>
<td>419</td>
</tr>
<tr>
<td>8.1.1</td>
<td>The Local Cloud</td>
<td>420</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Basics of the interaction</td>
<td>421</td>
</tr>
<tr>
<td>8.1.3</td>
<td>The size of the solar wind bubble</td>
<td>424</td>
</tr>
<tr>
<td>8.2</td>
<td>Cosmic rays</td>
<td></td>
</tr>
<tr>
<td>8.2.1</td>
<td>Cosmic rays observed near Earth</td>
<td>426</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Rudiments of the acceleration of particles</td>
<td>430</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Modulation of galactic cosmic rays by solar activity</td>
<td>436</td>
</tr>
<tr>
<td>8.2.4</td>
<td>‘Anomalous cosmic rays’</td>
<td>439</td>
</tr>
<tr>
<td>8.3</td>
<td>Examples of winds in the Universe</td>
<td></td>
</tr>
<tr>
<td>8.3.1</td>
<td>Some basic physical processes in mass outflows</td>
<td>441</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Some empirical results on stellar winds</td>
<td>443</td>
</tr>
<tr>
<td>8.3.3</td>
<td>The efficiency of the wind engine</td>
<td>445</td>
</tr>
<tr>
<td>8.4</td>
<td>Problems</td>
<td>448</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Energy density of cosmic rays</td>
<td>448</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Power law distribution of accelerated particles</td>
<td>448</td>
</tr>
<tr>
<td>8.4.3</td>
<td>The size of an atmosphere</td>
<td>448</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Instability of a star’s atmosphere produced by radiation pressure</td>
<td>448</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>449</td>
</tr>
</tbody>
</table>

Appendix 451

Index 457