Christian Iliadis

Nuclear Physics of Stars
Contents

Preface XI

1 Aspects of Nuclear Physics and Astrophysics 1
 1.1 History 1
 1.2 Nomenclature 3
 1.3 Solar System Abundances 4
 1.4 Astrophysical Aspects 8
 1.4.1 General Considerations 8
 1.4.2 Hertzsprung–Russell Diagram 10
 1.4.3 Stellar Evolution of Single Stars 11
 1.4.4 Binary Stars 28
 1.5 Masses, Binding Energies, Nuclear Reactions, and Related Topics 33
 1.5.1 Nuclear Mass and Binding Energy 33
 1.5.2 Energetics of Nuclear Reactions 34
 1.5.3 Atomic Mass and Mass Excess 37
 1.5.4 Number Abundance, Mass Fraction, and Mole Fraction 39
 1.5.5 Decay Constant, Mean Lifetime, and Half-Life 42
 1.6 Nuclear Shell Model 43
 1.6.1 Closed Shells and Magic Numbers 44
 1.6.2 Nuclear Structure and Nucleon Configuration 46
 1.7 Nuclear Excited States and Electromagnetic Transitions 49
 1.7.1 Energy, Angular Momentum, and Parity 49
 1.7.2 Transition Probabilities 51
 1.7.3 Branching Ratio and Mixing Ratio 53
 1.7.4 Gamma-Ray Transitions in a Stellar Plasma 55
 1.7.5 Isomeric States and the Case of 26Al 56
 1.8 Weak Interaction 58
 1.8.1 Weak Interaction Processes 60
 1.8.2 Energetics 61
1.8.3 Beta-Decay Probabilities 63
1.8.4 Beta-Decays in a Stellar Plasma 69

2 Nuclear Reactions 75

2.1 Cross Sections 75
2.2 Reciprocity Theorem 77
2.3 Elastic Scattering and Method of Partial Waves 79
2.3.1 General Aspects 79
2.3.2 Relationship Between Differential Cross Section and Scattering Amplitude 81
2.3.3 The Free Particle 82
2.3.4 Turning the Potential On 83
2.3.5 Scattering Amplitude and Elastic Scattering Cross Section 84
2.3.6 Reaction Cross Section 86
2.4 Scattering by Simple Potentials 89
2.4.1 Square-Well Potential 89
2.4.2 Square-Barrier Potential 95
2.4.3 Transmission Through the Coulomb Barrier 103
2.5 Theory of Resonances 108
2.5.1 General Aspects 108
2.5.2 Logarithmic Derivative, Phase Shift, and Cross Section 109
2.5.3 Breit-Wigner Formulas 113
2.5.4 Extension to Charged Particles and Arbitrary Values of Orbital Angular Momentum 117
2.5.5 R-Matrix Theory 122
2.5.6 Experimental Tests of the One-Level Breit-Wigner Formula 126
2.5.7 Partial and Reduced Widths 130
2.6 Continuum Theory 139
2.7 Hauser-Feshbach Theory 141

3 Thermonuclear Reactions 147

3.1 Cross Sections and Reaction Rates 147
3.1.1 Particle-Induced Reactions 147
3.1.2 Photon-Induced Reactions 151
3.1.3 Abundance Evolution 152
3.1.4 Forward and Reverse Reactions 155
3.1.5 Reaction Rates at Elevated Temperatures 159
3.1.6 Reaction Rate Equilibria 164
3.1.7 Nuclear Energy Generation 170
3.2 Nonresonant and Resonant Thermonuclear Reaction Rates 171
3.2.1 Nonresonant Reaction Rates for Charged-Particle-Induced Reactions 171
3.2.2 Nonresonant Reaction Rates for Neutron-Induced Reactions 185
3.2.3 Nonresonant Reaction Rates for Photon-Induced Reactions 189
3.2.4 Narrow-Resonance Reaction Rates 191
3.2.5 Broad-Resonance Reaction Rates 201
3.2.6 Electron Screening 207
3.2.7 Total Reaction Rates 212

4 Nuclear Physics Experiments 219
4.1 General Aspects 219
4.1.1 Charged-Particle Beams 220
4.1.2 Neutron Beams 222
4.2 Interaction of Radiation with Matter 225
4.2.1 Interactions of Heavy Charged Particles 225
4.2.2 Interactions of Photons 236
4.2.3 Interactions of Neutrons 244
4.3 Targets and Related Equipment 247
4.3.1 Backings 249
4.3.2 Target Preparation 250
4.3.3 Contaminants 255
4.3.4 Target Chamber and Holder 256
4.4 Radiation Detectors 258
4.4.1 General Aspects 258
4.4.2 Semiconductor Detectors 263
4.4.3 Scintillation Detectors 267
4.4.4 Proportional Counters 272
4.4.5 Microchannel Plate Detectors 273
4.5 Nuclear Spectroscopy 274
4.5.1 Charged-Particle Spectroscopy 275
4.5.2 Gamma-Ray Spectroscopy 280
4.5.3 Neutron Spectroscopy 299
4.6 Miscellaneous Experimental Techniques 305
4.6.1 Radioactive Ion Beams 306
4.6.2 Activation Method 311
4.6.3 Time-of-Flight Technique 315
4.7 Background Radiation 317
4.7.1 General Aspects 318
4.7.2 Background in Charged-Particle Detector Spectra 321
4.7.3 Background in γ-Ray Detector Spectra 323
4.7.4 Background in Neutron Detector Spectra 331
4.8 Yields and Cross Sections for Charged-Particle-Induced Reactions 334
4.8.1 Nonresonant and Resonant Yields 335
4.8.2 General Treatment of Yield Curves 342
4.8.3 Measured Yield Curves and Excitation Functions 348
4.8.4 Determination of Absolute Resonance Strengths and Cross Sections 352
4.9 Transmissions, Yields, and Cross Sections for Neutron-Induced Reactions 361
4.9.1 Resonance Transmission 362
4.9.2 Resonant and Nonresonant Yields 364
4.9.3 Effective Cross Section 365
4.9.4 Measured Yields and Transmissions 366
4.9.5 Relative and Absolute Cross Sections 368

5 Nuclear Burning Stages and Processes 375
5.1 Hydrostatic Hydrogen Burning 378
5.1.1 pp Chains 379
5.1.2 CNO Cycles 396
5.1.3 Hydrostatic Hydrogen Burning Beyond the CNO Mass Region 410
5.2 Explosive Hydrogen Burning 417
5.2.1 Hot CNO Cycles 418
5.2.2 Explosive Hydrogen Burning Beyond the CNO Mass Region 431
5.3 Hydrostatic Helium Burning 437
5.3.1 Helium-Burning Reactions 439
5.3.2 Nucleosynthesis During Hydrostatic He Burning 446
5.3.3 Other Helium-Burning Reactions 448
5.4 Explosive Hydrogen-Helium Burning 449
5.4.1 Breakout from the HCNO Cycles 450
5.4.2 Network Calculations at Constant Temperature and Density 454
5.4.3 Nucleosynthesis for Temperature-Density Profiles 466
5.5 Advanced Burning Stages 472
5.5.1 Carbon Burning 472
5.5.2 Neon Burning 480
5.5.3 Oxygen Burning 484
5.5.4 Silicon Burning 494
5.5.5 Nuclear Statistical Equilibrium and Freeze-Out 507
5.6 Nucleosynthesis Beyond the Iron Peak 514
5.6.1 The s-Process 518
5.6.2 The r-Process 536
5.6.3 The p-Process 556
5.7 Origin of the Solar System Nuclides 568
Appendix

A Solutions of the Schrödinger Equation in Three Dimensions 575
A.1 Zero Orbital Angular Momentum and Constant Potential 577
A.2 Arbitrary Orbital Angular Momentum and Zero Potential 578
A.3 Arbitrary Orbital Angular Momentum and Coulomb Potential 578

B Quantum Mechanical Selection Rules 581

C Kinematics 589
C.1 Relationship of Kinematic Quantities in the Laboratory Coordinate System 589
C.2 Transformation Between Laboratory and Center-of-Mass Coordinate System 593

D Angular Correlations 599
D.1 General Aspects 600
D.2 Pure Radiations in a Two-Step Process 604
D.3 Mixed Radiations in a Two-Step Process 606
D.4 Three-Step Process with Unobserved Intermediate Radiation 611
D.5 Experimental Considerations 613
D.6 Concluding Remarks 615

E Constants, Data, Units, and Notation 619
E.1 Physical Constants and Data 619
E.2 Mathematical Expressions 620
E.3 Prefixes and Units 621
E.4 Physical Quantities 623

Color Plates 631

References 643

Index 653