Nail H. Ibragimov

SUB Göttingen
219 264 090
2006 A 27826

A Practical Course in Differential Equations and Mathematical Modelling
Classical and new methods
Nonlinear mathematical models
Symmetry and invariance principles

Second Edition

Complimentary copy from the author to
Niedersächsischer Staats- und Universitätsbibliothek
28.06.2006, Ibragimov

ALGA Publications
Blekinge Institute of Technology
Karlskrona, Sweden
Contents

Preface to the second edition v
Preface to the first edition vi

1 Selected topics from analysis 1
 1.1 Elementary mathematics 1
 1.1.1 Numbers, variables and elementary functions 1
 1.1.2 Quadratic and cubic equations 5
 1.1.3 Areas of similar figures. Ellipse as an example 8
 1.1.4 Algebraic curves of the second degree 10
 1.2 Differential and integral calculus 14
 1.2.1 Rules for differentiation 14
 1.2.2 The mean value theorem 16
 1.2.3 Invariance of the differential 16
 1.2.4 Rules for integration 17
 1.2.5 The Taylor series 18
 1.2.6 Complex variables 20
 1.2.7 Approximate representation of functions 22
 1.2.8 Jacobian. Functional independence. Change of variables in multiple integrals 23
 1.2.9 Linear independence of functions. Wronskian 24
 1.2.10 Integration by quadrature 25
 1.2.11 Differential equations for families of curves 26
 1.3 Vector analysis 28
 1.3.1 Vector algebra 28
 1.3.2 Vector functions 30
 1.3.3 Vector fields 31
 1.3.4 Three classical integral theorems 33
 1.3.5 The Laplace equation 34
 1.3.6 Differentiation of determinants 35
 1.4 Notation of differential algebra 35
CONTENTS

1.4.1 Differential variables. Total differentiation 35
1.4.2 Higher derivatives of the product and of composite functions 36
1.4.3 Differential functions with several variables 37
1.4.4 The frame of differential equations 38
1.4.5 Transformation of derivatives 39
1.5 Variational calculus 42
1.5.1 Principle of least action 42
1.5.2 Euler-Lagrange equations with several variables 43
Problems to Chapter 1 44

2 Mathematical models 47
2.1 Introduction 47
2.2 Natural Phenomena 48
2.2.1 Population models 48
2.2.2 Ecology: Radioactive waste products 50
2.2.3 Kepler's laws. Newton's gravitation law 50
2.2.4 Free fall of a body near the earth 52
2.2.5 Meteoroid 53
2.2.6 A model of rainfall 54
2.3 Physics and engineering sciences 56
2.3.1 Newton's model of cooling 56
2.3.2 Mechanical vibrations. Pendulum 63
2.3.3 Collapse of driving shafts 67
2.3.4 The van der Pol equation 69
2.3.5 Telegraph equation 70
2.3.6 Electrodynamics 71
2.3.7 The Dirac equation 72
2.3.8 Fluid dynamics 73
2.3.9 The Navier-Stokes equations 74
2.3.10 A model of an irrigation system 75
2.3.11 Magnetohydrodynamics 75
2.4 Diffusion phenomena 76
2.4.1 Linear heat equation 76
2.4.2 Nonlinear heat equation 78
2.4.3 The Burgers and Korteweg-de Vries equations 79
2.4.4 Mathematical modelling in finance 79
2.5 Biomathematics 80
2.5.1 Smart mushrooms 80
2.5.2 A tumour growth model 82
2.6 Wave phenomena 83
2.6.1 Small vibrations of a string .. 83
2.6.2 Vibrating membrane .. 86
2.6.3 Minimal surfaces ... 88
2.6.4 Vibrating slender rods and plates 89
2.6.5 Nonlinear waves ... 91
2.6.6 The Chaplygin and Tricomi equations 93
Problems to Chapter 2 .. 94

3 Ordinary differential equations: Traditional approach 95
3.1 Introduction and elementary methods 95
 3.1.1 Cauchy’s problem. Existence of solutions 95
 3.1.2 Integration of the equation $y^{(n)} = f(x)$ 97
 3.1.3 Separable equations ... 97
 3.1.4 Exact equations ... 98
 3.1.5 Integrating factor .. 99
 3.1.6 Homogeneous equations 100
 3.1.7 Different types of homogeneity 103
 3.1.8 Reduction of order ... 105
 3.1.9 The Riccati equation ... 106
 3.1.10 The Bernoulli equation ... 109
3.2 First-order linear equations .. 110
 3.2.1 Homogeneous equations ... 110
 3.2.2 Integration of the non-homogeneous equation by vari-
 ation of the parameter .. 111
3.3 Second-order linear equations 112
 3.3.1 Homogeneous equation: Superposition 113
 3.3.2 Homogeneous equation: Equivalence properties 113
 3.3.3 Homogeneous equation: Constant coefficients 116
 3.3.4 Non-homogeneous equation: Variation of parameters 118
 3.3.5 Bessel’s equation and the Bessel functions 121
 3.3.6 Hypergeometric equation 121
3.4 Higher-order linear equations 123
 3.4.1 Homogeneous equations. Fundamental system 123
 3.4.2 Non-homogeneous equations. Variation of parameters 123
 3.4.3 Equations with constant coefficients 124
 3.4.4 Euler’s equation .. 126
3.5 Systems of first-order equations 126
 3.5.1 General properties of systems 126
 3.5.2 First integrals .. 127
 3.5.3 Linear systems with constant coefficients 131
 3.5.4 Variation of parameters for systems 133
CONTENTS

Problems to Chapter 3 .. 135

4 First-order partial differential equations 137
 4.1 Introduction ... 137
 4.2 Homogeneous linear equation 138
 4.3 Particular non-homogeneous equations 139
 4.4 Quasi-linear equations 141
 4.5 Systems of homogeneous equations 144
Problems to Chapter 4 .. 149

5 Linear partial differential equations of the second order 151
 5.1 Equations with several variables 151
 5.1.1 Classification at a fixed point 151
 5.1.2 Adjoint linear differential operators 153
 5.2 Classification of equations in two independent variables ... 156
 5.2.1 Characteristics. Three types of equations 156
 5.2.2 The standard form of the hyperbolic equations 158
 5.2.3 The standard form of the parabolic equations 159
 5.2.4 The standard form of the elliptic equations 159
 5.2.5 Equations of a mixed type 161
 5.2.6 The type of nonlinear equations 161
 5.3 Integration of hyperbolic equations in two variables 162
 5.3.1 d'Alembert's solution 162
 5.3.2 Equations reducible to the wave equation 163
 5.3.3 Euler's method 168
 5.3.4 Laplace's cascade method 170
 5.4 The initial value problem 173
 5.4.1 The wave equation 173
 5.4.2 Non-homogeneous wave equation 175
 5.5 Mixed problem. Separation of variables 176
 5.5.1 Vibration of a string tied at its ends 177
 5.5.2 Mixed problem for the heat equation 181
Problems to Chapter 5 .. 183

6 Nonlinear ordinary differential equations 185
 6.1 Introduction ... 185
 6.2 Transformation groups 186
 6.2.1 One-parameter groups on the plane 186
 6.2.2 Group generator and the Lie equations 187
 6.2.3 Invariants .. 189
 6.2.4 Canonical variables 190
6.3 Integration of first-order equations using symmetries
- **6.3.1 Definition of a symmetry group**
- **6.3.2 Lie's integrating factor**
- **6.3.3 Integration using canonical variables**
- **6.3.4 Invariant solutions**
- **6.3.5 General solution provided by invariant solutions**

6.4 Second-order equations
- **6.4.1 Calculation of symmetries**
- **6.4.2 Lie algebras**
- **6.4.3 Standard forms of two-dimensional Lie algebras**
- **6.4.4 Lie's integration method**
- **6.4.5 Integration of linear equations with a known particular solution**
- **6.4.6 Lie's linearization test**

6.5 Linearization of third-order equations
- **6.5.1 Laguerre's form of linear equations**
- **6.5.2 Linearization of third-order equations**
- **6.5.3 Linearization of the first candidate**
- **6.5.4 Linearization of the second candidate**

6.6 Nonlinear superposition
- **6.6.1 Introduction**
- **6.6.2 Main theorem on nonlinear superposition**
- **6.6.3 Examples of nonlinear superposition**
- **6.6.4 Integration of systems using nonlinear superposition**

7 Nonlinear partial differential equations
- **7.1 Symmetries**
- **7.1.1 Definition of a symmetry group**
- **7.1.2 Group transformations of solutions**

7.2 Group invariant solutions
- **7.2.1 Introduction**
- **7.2.2 The Burgers equation**
- **7.2.3 A nonlinear boundary-value problem**
- **7.2.4 Invariant solutions for an irrigation system**
- **7.2.5 Invariant solutions for a tumour growth model**

7.3 Invariance and conservation laws
- **7.3.1 Introduction**
- **7.3.2 Preliminaries**
- **7.3.3 Noether’s theorem**
- **7.3.4 Higher-order Lagrangians**
CONTENTS

7.3.5 Conservation theorems for ODEs 265
7.3.6 Generalization of Noether's theorem 266
7.3.7 Examples from classical mechanics 267
7.3.8 Derivation of Einstein's formula for energy 270
7.3.9 Conservation laws for the Dirac equations 271
Problems to Chapter 7 .. 273

8 Generalized functions or distributions 277
 8.1 Introduction of generalized functions 277
 8.1.1 Heuristic considerations 278
 8.1.2 Definition and examples of distributions 279
 8.1.3 Representations of the δ-function as a limit 281
 8.2 Operations with distributions 281
 8.2.1 Multiplication by a function 281
 8.2.2 Differentiation .. 282
 8.2.3 Direct product of distributions 282
 8.2.4 Convolution .. 283
 8.3 The distribution Δ(r^2−n) 284
 8.3.1 The mean value over the sphere 284
 8.3.2 Solution of the Laplace equation Δυ(r) = 0 285
 8.3.3 Evaluation of the distribution Δ(r^2−n) 286
 8.4 Transformations of distributions 287
 8.4.1 Motivation by linear transformations 287
 8.4.2 Change of variables in the δ-function 289
 8.4.3 Arbitrary group transformations 289
 8.4.4 Infinitesimal transformation of distributions 290
Problems to Chapter 8 .. 292

9 Invariance principle and fundamental solutions 293
 9.1 Introduction ... 293
 9.2 The invariance principle ... 294
 9.2.1 Formulation of the invariance principle 294
 9.2.2 Fundamental solution of linear equations with constant coefficients ... 294
 9.2.3 Application to the Laplace equation 295
 9.2.4 Application to the heat equation 298
 9.3 Cauchy's problem for the heat equation 299
 9.3.1 Fundamental solution for the Cauchy problem 299
 9.3.2 Derivation of the fundamental solution for the Cauchy problem from the invariance principle 300
 9.3.3 Solution of the Cauchy problem 302
9.4 Wave equation ... 303
 9.4.1 Preliminaries on differential forms 303
 9.4.2 Auxiliary equations with distributions 307
 9.4.3 Symmetries and definition of fundamental solutions
 for the wave equation 309
 9.4.4 Derivation of the fundamental solution 311
 9.4.5 Solution of the Cauchy problem 312

9.5 Equations with variable coefficients 313
Problems to Chapter 9 .. 314

Answers ... 315

Bibliography .. 324

Index ... 325