First Light for the Next Generation of Compton and Pair Telescopes

Development of New Techniques for the Data Analysis of Combined Compton and Pair Telescopes and their Application to the MEGA Prototype

Andreas Christian Zoglauer
I Measuring extraterrestrial gamma rays

1 New mission in Medium-Energy Gamma-ray Astronomy
 1.1 Medium-Energy Gamma-ray Astronomy
 1.1.1 Cosmic accelerators
 1.1.2 Nucleosynthesis
 1.1.3 Capture, annihilation and deexcitation
 1.1.4 Other sources of interest
 1.2 Instrumentation for medium-energy gamma-ray astronomy
 1.2.1 Spatial and temporal modulation
 1.2.2 Single event detector systems
 1.2.3 Focusing gamma-rays
 1.3 MEGA - A telescope for medium-energy gamma-ray astronomy

2 Interaction processes
 2.1 Interactions of electrons with matter
 2.1.1 Molière scattering of electrons
 2.1.2 Energy loss of electrons in matter
 2.2 Compton scattering
 2.2.1 Kinematics
 2.2.2 Cross-sections
 2.2.3 Polarization
 2.2.4 Incomplete measurement
 2.2.5 Angular resolution determination
 2.2.6 Doppler broadening as a lower limit to the angular resolution of a Compton telescope
 2.3 Pair production

II New analysis techniques for combined Compton and pair telescopes

3 Simulation and data analysis overview
 3.1 From detector measurements to hits
 3.2 From simulations to hits
Event reconstruction

4.1 The basic idea

- **4.1.1 Tasks and problems**
- **4.1.2 Outline of the event reconstruction**
- **4.1.3 Approaches for complex reconstruction tasks**

4.2 Clusterizing

- **4.3 Identifying and reconstructing pair events**
 - **4.3.1 Method**
 - **4.3.2 Performance**

4.4 Compton electron tracking

- **4.4.1 The data space of electron tracking**
- **4.4.2 Identification of Compton electron tracks**

4.5 Compton sequence reconstruction

- **4.5.1 Characteristics of the data space**
- **4.5.2 Classic Compton sequence reconstruction**
- **4.5.3 Bayesian Compton sequence reconstruction**

4.6 Combined Compton reconstruction performance

Image reconstruction

5.1 Selecting an algorithm

5.2 The list-mode algorithm

5.3 Imaging response of a Compton and pair telescope

The MEGA prototype and its performance

6.1 Setup of the prototype instrument

- **6.1.1 Tracker**
- **6.1.2 Calorimeter**
- **6.1.3 Anti-coincidence shield**
- **6.1.4 Setup of the prototype**

6.2 Calibration measurements

7.1 Event statistics

7.2 Spectral response

Imaging properties of the MEGA prototype

8.1 Angular resolution

- **8.1.1 The Compton regime**
- **8.1.2 The pair regime**

8.2 List-Mode Likelihood imaging of the prototype data

- **8.2.1 Multiple sources**
- **8.2.2 Extended sources**
- **8.2.3 On axis imaging as a function of energy**
- **8.2.4 Field of view**
9 The MEGA prototype as Compton polarimeter 123
 9.1 Data correction .. 123
 9.2 Polarization response of the prototype 124

IV Steps towards a MEGA space mission 127

10 Expected performance of a MEGA satellite mission 129
 10.1 Necessary design improvements towards a satellite mission 129
 10.2 A potential MEGA satellite 131
 10.2.1 Simulation and orbital background 132
 10.2.2 Event selections ... 133
 10.2.3 Instrument resolutions and efficiency 134
 10.2.4 Sensitivity .. 138
 10.2.5 Background rejection 142
 10.2.6 Comparing the MEGA satellite instrument to COMPTEL 143
 10.3 Selected science simulations 144

11 Closing remarks 147

V Appendix 151

A Frequently used abbreviations and notations 152

B Introduction to Bayes filters 153
 B.1 Example 1 ... 153
 B.2 Example 2 ... 154

References 155

Acknowledgements 161