Fourier–Mukai transforms in algebraic geometry

D. HUYBRECHTS
Mathematisches Institut Universität Bonn

CLARENDON PRESS • OXFORD
2006
CONTENTS

1 **Triangulated categories**
1.1 Additive categories and functors
1.2 Triangulated categories and exact functors
1.3 Equivalences of triangulated categories
1.4 Exceptional sequences and orthogonal decompositions

2 **Derived categories: a quick tour**
2.1 Derived category of an abelian category
2.2 Derived functors
2.3 Spectral sequences

3 **Derived categories of coherent sheaves**
3.1 Basic structure
3.2 Spanning classes in the derived category
3.3 Derived functors in algebraic geometry
3.4 Grothendieck–Verdier duality

4 **Derived category and canonical bundle – I**
4.1 Ample (anti-)canonical bundle
4.2 Autoequivalences for ample (anti-)canonical bundle
4.3 Ample sequences in derived categories

5 **Fourier–Mukai transforms**
5.1 What it is and Orlov’s result
5.2 Passage to cohomology

6 **Derived category and canonical bundle – II**
6.1 Kodaira dimension under derived equivalence
6.2 Geometrical aspects of the Fourier–Mukai kernel
6.3 Nefness under derived equivalence
6.4 Derived equivalence versus birationality
6.5 Recap: Kodaira dimension, canonical ring, etc.

7 **Equivalence criteria for Fourier–Mukai transforms**
7.1 Fully faithful
7.2 Equivalences
7.3 Canonical quotients

8 **Spherical and exceptional objects**
8.1 Autoequivalences induced by spherical objects
8.2 Braid group actions
Contents

8.3 Beilinson spectral sequence 179
8.4 They go together 185

9 Abelian varieties 192
9.1 Basic definitions and facts 192
9.2 The Poincaré bundle as a Fourier–Mukai kernel 201
9.3 SL_2-action 204
9.4 Derived equivalences of abelian varieties 209
9.5 Autoequivalences of abelian varieties 223

10 K3 surfaces 228
10.1 Recap: K3 surfaces 228
10.2 Derived equivalence of K3 surfaces 232
10.3 Recap: Moduli spaces of sheaves 240

11 Flips and flops 246
11.1 Preparations: Closed embeddings and blow-ups 246
11.2 Derived categories under blow-up 254
11.3 The standard flip 258
11.4 The Mukai flop 263

12 Derived categories of surfaces 272
12.1 Recap: Enriques classification of algebraic surfaces 273
12.2 Minimal surfaces with Kod = $-\infty, 2$ 278
12.3 Surfaces with torsion canonical bundle 280
12.4 Properly elliptic surfaces 281

13 Where to go from here 286
13.1 McKay correspondence for derived categories 286
13.2 Homological mirror symmetry 289
13.3 D-branes and stability conditions 291
13.4 Twisted derived categories 295

References 299

Index 305