ELECTRONIC AND OPTICAL PROPERTIES OF D-BAND PEROVSKITES

THOMAS WOLFRAM
Formerly of University of Missouri-Columbia

ŞİNASİ ELLİALTIOĞLU
Middle East Technical University, Ankara

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface

1 Introductory discussion of the perovskites
 1.1 Introduction
 1.2 The perovskite structure
 1.3 Ionic model
 1.4 Madelung and electrostatic potentials
 1.5 Covalent mixing
 1.6 Energy bands
 1.7 Localized d electrons
 1.8 Magnetism in the perovskites
 1.9 Superconductivity
 1.10 Some applications of perovskite materials

2 Review of the quantum mechanics
 of N-electron systems
 2.1 The Hamiltonian
 2.2 The Slater determinant state
 2.3 Koopman's theorem
 2.4 Hartree–Fock equations
 2.5 Hartree–Fock potential
 2.6 Approximate exchange potential
 2.7 The LCAO method
 2.8 Orthogonalized atomic orbitals
3 Empirical LCAO model
 3.1 LCAO matrix elements 41
 3.2 Slater–Koster model 42
 3.3 Symmetry properties of the Löwdin orbitals 48
4 LCAO energy band model for cubic perovskites 53
 4.1 The unit cell and Brillouin zone 53
 4.2 LCAO matrix equation for an infinite lattice 56
 4.3 LCAO matrix elements for the perovskite 57
 4.4 LCAO eigenvalue equation for the cubic perovskites 61
 4.5 Qualitative features of the energy bands 65
 4.6 Summary of the chapter results 73
5 Analysis of bands at symmetry points 77
 5.1 Energy bands at Γ 77
 5.2 Energy bands at X 81
 5.3 Energy bands at M 84
 5.4 Energy bands at R 86
 5.5 Cluster electronic states 90
6 Density of states 107
 6.1 Definitions 107
 6.2 DOS for the pi bands 109
 6.3 DOS for the sigma bands 114
 6.4 The Fermi surface and effective mass 123
7 Optical properties of the d-band perovskites 138
 7.1 Review of semiclassical theory 139
 7.2 Qualitative theory of $\varepsilon_2(\omega)$ 142
 7.3 Interband transitions from non-bonding bands 153
 7.4 Frequency dependence of $\varepsilon_2(\omega)$ for insulating and semiconducting perovskites 157
 7.5 Frequency dependence of $\varepsilon_2(\omega)$ from $\sigma^0 \rightarrow \pi^*$ transitions 167
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>Frequency dependence of $\varepsilon_2(\omega)$ from $\pi \rightarrow \pi^*$ transitions</td>
<td>170</td>
</tr>
<tr>
<td>7.7</td>
<td>$\sigma \rightarrow \pi^*$ interband transitions</td>
<td>173</td>
</tr>
<tr>
<td>7.8</td>
<td>Summary</td>
<td>180</td>
</tr>
<tr>
<td>8</td>
<td>Photoemission from perovskites</td>
<td>182</td>
</tr>
<tr>
<td>8.1</td>
<td>Qualitative theory of photoemission</td>
<td>183</td>
</tr>
<tr>
<td>8.2</td>
<td>Partial density of states functions</td>
<td>187</td>
</tr>
<tr>
<td>8.3</td>
<td>The XPS spectrum of SrTiO$_3$</td>
<td>189</td>
</tr>
<tr>
<td>8.4</td>
<td>Na$_x$WO$_3$</td>
<td>192</td>
</tr>
<tr>
<td>8.5</td>
<td>Many-body effects in XPS spectra</td>
<td>193</td>
</tr>
<tr>
<td>9</td>
<td>Surface states on d-band perovskites</td>
<td>199</td>
</tr>
<tr>
<td>9.1</td>
<td>Perturbations at a surface</td>
<td>199</td>
</tr>
<tr>
<td>9.2</td>
<td>Surface energy band concepts</td>
<td>202</td>
</tr>
<tr>
<td>9.3</td>
<td>Self-consistent solutions for the band-gap surface states: SrTiO$_3$</td>
<td>213</td>
</tr>
<tr>
<td>9.4</td>
<td>Surface-oxygen defect states</td>
<td>221</td>
</tr>
<tr>
<td>10</td>
<td>Distorted perovskites</td>
<td>231</td>
</tr>
<tr>
<td>10.1</td>
<td>Displacive distortions: cubic-to-tetragonal phase transition</td>
<td>231</td>
</tr>
<tr>
<td>10.2</td>
<td>Octahedral tilting</td>
<td>240</td>
</tr>
<tr>
<td>11</td>
<td>High-temperature superconductors</td>
<td>249</td>
</tr>
<tr>
<td>11.1</td>
<td>Background</td>
<td>249</td>
</tr>
<tr>
<td>11.2</td>
<td>Band theory and quasiparticles</td>
<td>253</td>
</tr>
<tr>
<td>11.3</td>
<td>Effective Hamiltonians for low-energy excitations</td>
<td>256</td>
</tr>
<tr>
<td>11.4</td>
<td>Angle-resolved photoemission</td>
<td>257</td>
</tr>
<tr>
<td>11.5</td>
<td>Energy bands of the Cu–O$_2$ layers</td>
<td>260</td>
</tr>
<tr>
<td>11.6</td>
<td>Chains in YBa$_2$Cu$_3$O$_6$.95</td>
<td>277</td>
</tr>
<tr>
<td>11.7</td>
<td>Summary</td>
<td>279</td>
</tr>
</tbody>
</table>
Appendices

A Physical constants and the complete elliptic integral of the first kind 285
 A.1 Selected physical constants 285
 A.2 The complete elliptic integral of the first kind 286
B The delta function 288
C Lattice Green's function 291
 C.1 Function $G_\varepsilon(0)$ 293
 C.2 Function $G_\varepsilon(1)$ 294
 C.3 Lattice Green's function for the pi bands 296
D Surface and bulk Madelung potentials
 for the ABO_3 structure 302

Index 305