Geometry and Dioptrics in Classical Islam

ROSHDI RASHED

Al-Furqān
Islamic Heritage Foundation
LONDON
1426/2005
CONTENTS

PREFACE TO THE TRANSLATION ... v

NOTICE ... XIII

CHAPITRE I: THE MATHEMATICIANS: SCIENTIFIC MILIEU AND WORKS .. 1

1. Ibn Sahl ... 1
 1.1. Ibn Sahl and his Time .. 1
 1.2. Ibn Sahl's Scientific Work 4
 1.2.1. On Squaring the Parabola 5
 1.2.2. On Centers of Gravity 5
 1.2.3. Geometrical Problems Cited by al-Sijzi 6
 1.2.4. On Lines of Diorism .. 7
 1.2.5. Al-Shanni's Book on the Synthesis of the Problems Analysed by Abū Sa'd al-'Alā' ibn Sahl 7
 1.2.6. On the Properties of the Three Conic Sections 10
 1.2.7. The Book on the Astrolabe by the Demonstration of al-Qūhi and the Commentary of Ibn Sahl 11
 1.2.8. Burning Instruments .. 12
 1.2.9. Proof that the Celestial Sphere is not of Extreme Transparency ... 15

2. Al-Qūhi ... 16
 2.1. The Mathematician and the Artisan 16
 2.2. Al-Qūhi's Scientific Work 19
 2.2.1. The Book on the Astrolabe by Demonstration 19
 2.2.2. On the Perfect Compass 20
 2.2.3. Lemma to the Division of the Straight Line by Archimedes ... 23
 2.2.4. On the Construction of an Equilateral Pentagon in a Given Square .. 23
 2.2.5. On the Determination of the Division of a Known Angle into Three Equal Parts 26
 2.2.6. On the Division of an Angle Enclosed by Two Straight Lines into Three Equal Parts 27
 2.2.7. On the Determination of Two Straight Lines Between Two Straight Lines, so that the Four Succeed One Another in Continuous Proportion, and on the Division of an Angle into Three Equal Parts ... 27
 2.2.8. On the Trisection of an Angle and the Construction of a Regular Heptagon in the Circle 28
2.2.9. On the Knowledge of the Magnitude of the Distance between the Center of the Earth and the Position of a Shooting Star in the Night 28
2.2.10. On the Knowledge of the Magnitude of what is Seen of the Sky and of the Sea from the Top of an Elevated Thing 29
2.2.11. In Finite Time, there is Infinite Movement 30

3. Al-Qūhī's Predecessors: On the Trisection of an Angle 30
3.1. Ahmad ibn Shākir: On the Trisection of an Angle Enclosed by Two Straight Lines 30
3.2. Thābit ibn Qurra 30
3.2.1. On the Construction of Two Means and the Division of a Known Angle into Three Equal Parts 30
3.2.2. The Division of an Angle into Three Equal Parts 31
3.3. Abū Ja'far Muhammad ibn al-Husayn al-Khāzīn 31
3.3.1. On the Division of an Angle into Three Equal Parts and the Determination of Two Straight Lines Between Two Straight Lines that Succeed One Another in Continuous Proportion 31
3.3.2. On the Determination of Two Straight Lines Between Two Straight Lines that Succeed One Another in Continuous Proportion by a Method of Fixed Geometry 31

4. Al-Sijzi 32
4.1. On the Construction of the Perfect Compass 32
4.2. On the Properties of the Hyperbolic Dome and the Parabolic Dome 32
4.3. On the Properties of the Elliptical, Hyperbolic and Parabolic Solids 33

5. Ibn al-Haytham 33
5.1. Book Seven of the Optics 34
5.2. The Treatise on the Burning Sphere 37

6. Al-Fārīsī: The Commentary on the Burning Sphere 38

Dioptrics

CHAPTER II: IBN SAHL AND THE BEGINNINGS OF DIOPTRICS 43
1. Introduction 43
2. The Parabolic Mirror 46
3. The Ellipsoidal Mirror 54
4. Refraction and Snell's Law 58
5. Plano-Convex and Biconvex Lenses 63
6. Conclusion 72

TEXTS AND TRANSLATION
1. On Burning Instruments 76
2. Proof that the Celestial Sphere is not of Extreme Transparency 144
CHAPTER III: THE DIOPTICAL RESEARCH OF IBN AL-HAYTHAM AND AL-FĀRISĪ

1. The Spherical Diopter .. 153
2. The Spherical Lens ... 160
3. The Burning Sphere ... 162
4. The Burning Sphere and the Quantitative Study of al-Fārīsī 170

TEXTS AND TRANSLATION

Ibn al-Haytham
1. Optics - Seventh Book: The Spherical Diopter 184
2. Optics - Seventh Book: The Spherical Lens 216
3. Treatise on the Burning Sphere 224
4. Treatise on the Burning Sphere - Redaction of al-Fārīsī 256

Geometry

CHAPTER IV: ON CONIC SECTIONS AND THEIR APPLICATIONS 295

1. Conics and Harmonic Division 297
 1.1. Ibn Sahl on Harmonic Division 297
 1.2. Projective Interpretation of Ibn Sahl’s Study 303
2. Ibn Sahl on Conic Sections and Geometrical Constructions 306
 2.1. The Synthesis by al-Shanni of Ibn Sahl’s Analysis of Geometrical Problems 306
 2.2. Ibn Sahl on the Construction of a Triangle by Means of an Ellipse and a Circle 334
3. Conic Sections and Geometrical Constructions: al-Qūhī and his Predecessors 336
 3.1. Introduction ... 336
 3.2. The Two Mean Proportionals 338
 3.2.1. The Legacy of the Ancients 338
 3.2.2. The New Tradition: Thābit ibn Qurra and al-Khāzīn 341
 3.2.3. Al-Qūhī .. 352
 3.3. The Trisection of an Angle 355
 3.3.1. Introduction 355
 3.3.2. The Earliest Trisections of an Angle: Pappus, Ahmad ibn Shākir and Thābit ibn Qurra 355
 3.3.3. Al-Khāzīn: Trisecting an Angle and the Cleavage between Ancients and Moderns 366
 3.4. Al-Qūhī: Variation on the Trisection of an Angle 370
 3.5. The Lemma to Archimedes’ Division of a Straight Line 383
 3.6. The Inscription of a Pentagon in a Given Square 389
 3.7. Conclusion .. 402
4. A New Orientation in the Geometry of Conics: Quadratic Surfaces 403
 4.1. On the Properties of Hyperbolic and Parabolic Domes 405
 4.2. Projective Interpretation of the Problem of the Plane Sections of a Quadric 417
 4.3. On the Properties of Elliptical, Hyperbolic and Parabolic Solids 418
 4.3.1. Plane Sections 419
 4.3.2. Hyperbolic and Parabolic Plane Sections 425
 4.4. The Projective Interpretation of the Investigation of Plane Sections of a Cylinder 429

TEXTS AND TRANSLATION

IBN SAHL

1. On the Properties of the Three Conic Sections 434
2. Book on the Synthesis of the Problems Analysed by Ibn Sahil 444
3. A Fragment on the Construction of a Triangle by Means of an Ellipse and a Circle 486
4. A Problem of Geometry 490

AL-QŪHĪ

1. On the Determination of the Division of a Known Angle into Three Equal Parts 494
2. On the Division of an Angle Enclosed by Two Straight Lines into Three Equal Parts 504
3. On the Determination of Two Straight Lines Between Two Straight Lines, so that the Four Succeed One Another in Continuous Proportion, and on the Division of an Angle into Three Equal Parts 508
4. On the Trisection of an Angle and the Construction of a Regular Heptagon in the Circle 514
5. Lemma to the Division of the Straight Line by Archimedes 522
6. On the Construction of an Equilateral Pentagon in a Given Square 532

AL-QŪHĪ’S PREDECESSORS

1. Ahmad ibn Shākir
 On the Trisection of an Angle Enclosed by Two Straight Lines 550
2. Thābit ibn Qurra
 On the Construction of Two Means and the Division of a Known Angle into Three Parts 554
 The Division of an Angle Enclosed by Two Straight Lines into Three Equal Parts 564
3. Al-Khāzin
 The Division of an Angle into Three Equal Parts and the Determination of Two Straight Lines Between Two Straight Lines that Succeed One Another in Continuous Proportion 574
 On the Determination of two Straight Lines Between Two Straight Lines that Succeed One Another in Continuous Proportion by a Method of Fixed Geometry 586
AL-SUZI

On the Properties of the Hyperbolic Dome and the Parabolic Dome 592
On the Properties of the Elliptical, Hyperbolic and Parabolic Solids 610

CHAPTER V: A TRADITION OF RESEARCH: CONTINUOUS DRAWING OF CONIC CURVES AND THE PERFECT COMPASS 629

Introduction 629

1. The Mechanical Construction of Conics: Ibn Sahl 632
 1.1. The Parabola 632
 1.2. The Ellipse 633
 1.3. The Hyperbola 633

2. The Invention of the Perfect Compass: Abu Sahl al-Qühî 635
 2.1. Al-Qühî’s First Book 636
 2.2. Al-Qühî’s Second Book 641
 2.3. Correspondence between al-Qühî’s propositions 4, 5, and 6 and proposition I.52 to 59 of Apollonius’ Conics 658

3. Al-Sijzi and the Continuous Drawing of Similar Conic Sections with the Help of the Perfect Compass 659

4. Continuous Drawing and the Classification of Curves 668

5. Geminus and al-Sijzi: the Classification of Curves 670

6. Ibn ‘Iraq and al-Birûni on al-Qühî’s Perfect Compass 677
 6.1. Ibn ‘Iraq: on the Lemmas of al-Qühî 677
 6.2. Al-Birûni: al-Qühî’s Theory of the Perfect Compass 682
 6.2.1. The Parabola 682
 6.2.2. The Hyperbola 684
 6.2.3. The Ellipse 687

7. Kamâl al-Din ibn Yûnus and his Pupils: On the Perfect Compass 689
 7.1. Introduction 689
 7.2. Al-Abhari and the Perfect Compass 693

8. Conclusion: Drawing Conic Sections: A New Subject Area in Geometry 722

TEXTS AND TRANSLATION

1. Al-Qühî: On the Perfect Compass 726
2. Al-Sijzi: On the Construction of the Perfect Compass 798
4. Al-Birûni: Account of the Perfect Compass 816
5. Al-Abhari: Treatise on the Compass of Conic Sections 828

CHAPTER VI: CONICAL AND CYLINDRICAL PROJECTIONS, AND ASTROLABES 849

1. The Astrolabe and the Methods of Projection 849
2. Ibn Sahl on Stereographic Projection 870
CONTENTS

TEXTS AND TRANSLATION

1. *Treatise on the Art of the Astrolabe by Demonstration*, composed by Al-Qūḥī .. 878
2. *Ibn Sahl: Commentary on the Treatise on the Art of the Astrolabe by Al-Qūḥī* .. 940
3. *A Fragment of Ibn Sahl on Stereographic Projection* 968

APPENDIX I: GEOMETRY AND MECHANICS (Kinematics). Al-Qūḥī, vs Aristotle: On Motion .. 975

TEXTS AND TRANSLATION

1. Al-Qūḥī: *In Finite Time, there is Infinite Movement* 986
2. *Fragment of the Treatise of Ibn Buṭlān: The Refutations of ‘Alī ibn Riḍwān* .. 988

APPENDIX II: Al-Qūḥī: From Meteorology to Astronomy 991

TEXTS AND TRANSLATION

1. *On the Knowledge of the Magnitude of the Distance between the Center of the Earth and the Position of a Shooting Star in the Night* .. 1008
2. *On the Knowledge of the Magnitude of what is Seen of the Sky and of the Sea from the Top of an Elevated Thing* 1018
3. *Fi maʾrifat mā yurā min al-samāʾ wa-al-bahr* (abridged version) ... 1033

ADDITIONAL NOTES .. 1037
Notes on Ibn Sahl’s Treatises on Burning Instruments and the Celestial Sphere ... 1037
1. On the parts of the ‘instrument’ .. 1037
2. Experimentation .. 1039
3. Translation of Ptolemy’s *Optics* ... 1045
Notes on Ibn al-Haytham’s *On the Sundial* 1045
Notes on al-Shanṭi’s Book on Synthesis 1052
Notes on the Astrolabe ... 1055
1. Treatise by al-Qūḥī .. 1055
2. Ibn Sahl’s Commentary on the treatise by al-Qūḥī 1059

ARABIC-ENGLISH GLOSSARY ... 1067

INDEX .. 1139
Index of Names .. 1139
Subject Index .. 1145
Index of Works ... 1157
Index of Manuscripts ... 1163

BIBLIOGRAPHY .. 1165

ARABIC PREFACE .. 1