Contents

Preface xi
Dedication and acknowledgments xv

Chapter 1 Introduction 1

1.1 Electromagnetic scattering by a fixed finite object 1
1.2 Actual observables 5
1.3 Foldy–Lax equations 6
1.4 Dynamic and static scattering by random groups of particles 7
1.5 Ergodicity 9
1.6 Single scattering by random particles 10
1.7 Multiple scattering by a large random group of particles 12
1.8 Coherent backscattering 14
1.9 Classification of electromagnetic scattering problems 16
1.10 Notes and further reading 18

Chapter 2 Maxwell equations, electromagnetic waves, and Stokes parameters 20

2.1 Maxwell equations and constitutive relations 20
2.2 Boundary conditions 23
2.3 Time-harmonic fields 26
2.4 The Poynting vector 28
2.5 Plane-wave solution 31
2.6 Coherency matrix and Stokes parameters 37
2.7 Ellipsometric interpretation of the Stokes parameters 41
2.8 Rotation transformation rule for the Stokes parameters 47
2.9 Quasi-monochromatic light 48
2.10 Measurement of the Stokes parameters 54
2.11 Spherical-wave solution 58
2.12 Coherency dyad of the electric field 62
2.13 Historical notes and further reading 64

Chapter 3 Basic theory of electromagnetic scattering 66
3.1 Volume integral equation and Lippmann–Schwinger equation 67
3.2 Scattering in the far-field zone 71
3.3 Scattering dyadic and amplitude scattering matrix 78
3.4 Reciprocity 80
3.5 Scale invariance rule 84
3.6 Electromagnetic power and electromagnetic energy density 87
3.7 Phase matrix 93
3.8 Extinction matrix 99
3.9 Extinction, scattering, and absorption cross sections 102
3.10 Coherency dyad of the total electric field 105
3.11 Other types of illumination 109
3.12 Variable scatterers 110
3.13 Thermal emission 112
3.14 Historical notes and further reading 114

Chapter 4 Scattering by a fixed multi-particle group 115
4.1 Vector form of the Foldy–Lax equations 115
4.2 Far-field version of the vector Foldy–Lax equations 118

Chapter 5 Statistical averaging 123
5.1 Statistical averages 124
5.2 Configurational averaging 126
5.3 Averaging over particle states 126

Chapter 6 Scattering by a single random particle 131
6.1 Scattering in the far-field zone of the trap volume 131
6.2 "Near-field" scattering 136

Chapter 7 Single scattering by a small random particle group 140
7.1 Single-scattering approximation for a fixed group of particles 141
7.2 Far-field single-scattering approximation for a fixed particle group 142
7.3 Far-field uncorrelated single-scattering approximation and modified uncorrelated single-scattering approximation 145
7.4 Forward-scattering interference 147
7.5 Energy conservation 151
7.6 Conditions of validity of the far-field modified uncorrelated single-scattering approximation 151
7.7 First-order-scattering approximation 158
7.8 Discussion 163

Chapter 8 Radiative transfer equation 165
8.1 The Twersky approximation 166
8.2 The Twersky expansion of the coherent field 171
8.3 Coherent field 173
8.4 Transfer equation for the coherent field 180
8.5 Dyadic correlation function in the ladder approximation 181
8.6 Integral equation for the ladder specific coherency dyadic 191
8.7 Integro-differential equation for the diffuse specific coherency dyadic 195
8.8 Integral and integro-differential equations for the diffuse specific coherency matrix 197
8.9 Integral and integro-differential equations for the diffuse specific coherency column vector 198
8.10 Integral and integro-differential equations for the specific intensity column vector 199
8.11 Summary of assumptions and approximations 200
8.12 Physical meaning of the diffuse specific intensity column vector and the coherent Stokes column vector 203
8.13 Energy conservation 208
8.14 External observation points 209
 8.14.1 Coherent field 210
 8.14.2 Ladder coherency dyadic 211
 8.14.3 Specific intensity column vector 213
 8.14.4 Discussion 214
 8.14.5 Illustrative example: first-order scattering 216
8.15 Other types of illumination 217
8.16 Phenomenological approach to radiative transfer 218
8.17 Scattering media with thermal emission 224
8.18 Historical notes and further reading 225

Chapter 9 Calculations and measurements of single-particle characteristics 227
9.1 Exact theoretical techniques 227
9.2 Approximations 234
9.3 Measurement techniques 237
Chapter 10
Radiative transfer in plane-parallel scattering media
10.1 The standard problem
10.2 The propagator
10.3 The general problem
10.4 Adding equations
10.5 Invariant imbedding equations
10.6 Ambarzumian equation
10.7 Reciprocity relations for the reflection and transmission matrices
10.8 Notes and further reading

Chapter 11
Macroscopically isotropic and mirror-symmetric scattering media
11.1 Symmetries of the Stokes scattering matrix
11.2 Macroscopically isotropic and mirror-symmetric scattering medium
11.3 Phase matrix
11.4 Forward-scattering direction and extinction matrix
11.5 Backward scattering
11.6 Scattering cross section and asymmetry parameter
11.7 Thermal emission
11.8 Spherically symmetric particles
11.9 Effects of nonsphericity and orientation
11.10 Normalized scattering and phase matrices
11.11 Expansion in generalized spherical functions
11.12 Circular-polarization representation
11.13 Illustrative examples

Chapter 12
Radiative transfer in plane-parallel, macroscopically isotropic and mirror-symmetric scattering media
12.1 The standard problem
12.2 The general problem
12.3 Adding equations
12.4 Invariant imbedding and Ambarzumian equations
12.5 Successive orders of scattering
12.6 Symmetry relations
12.6.1 Phase matrix
12.6.2 Reflection and transmission matrices
12.6.3 Matrices describing the internal field
12.6.4 Perpendicular directions
12.7 Fourier decomposition
Appendix F Wigner functions, Jacobi polynomials, and generalized
spherical functions 418
F.1 Wigner d-functions 418
F.2 Jacobi polynomials 422
F.3 Orthogonality and completeness 422
F.4 Recurrence relations 423
F.5 Legendre polynomials and associated Legendre functions 424
F.6 Generalized spherical functions 425
F.7 Wigner D-functions, addition theorem, and unitarity 426
F.8 Further reading 428
Appendix G Système International units 429
Appendix H Abbreviations 431
Appendix I Glossary of symbols 433

References 442
Index 469