Initiation to Global Finslerian Geometry

H. Akbar-Zadeh
Director of Research at C.N.R.S.
Paris
France
CONTENTS

Preface v
Introduction vi

Chapter I
Linear Connections on a Space of Linear Elements

Abstract

I. Regular Linear Connections

1. Fibre Bundles V(M) and W(M) 1
2. Frames and Co-frames 2
3. Tensors and Tensor forms 4
4. Linear connections 5
5. Absolute differential in a linear connection. Regular linear connection 6
6. Exterior differential forms 9

II. Curvature and Torsion of a regular linear connection

7. Torsion and curvature tensors of a general linear connection
 1. Torsion tensors 13
 2. Curvature tensors 14
 Conditions of reduction 17
9. Ricci identities 18
10. Bianchi identities 20
11. Torsion and Curvature defined by a covariant derivation 21

Chapter II
Finslerian Manifolds

Abstract

1. Metric manifolds 23
2. Euclidean connections 24
3. The system of generators on W. 27
4. Special connections 30
5. Case of orthonormal frames and local coordinates for the class of special connections 32
6. Finslerian manifolds 33
7. Finslerian connections 36
8. Curvature tensors of the Finslerian connection 40
9. Almost Euclidean connections 44

Chapter III
Isometries and affine vector fields on the unitary tangent fibre bundle

Abstract

1. Local group of 1-parameter local transformations and Lie derivative 49
2. Local invariant sections 53
3. Introduction of a regular linear connection 54
4. The Lie derivative of a tensor in the large sense 57
5. The Lie derivative of the coefficients of a regular linear connection 58
6. Fundamental formula 61
7. Divergence formulas 64
8. Infinitesimal isometries, the compact case 67
9. Ricci curvatures and Infinitesimal isometries 70
10. Infinitesimal affine transformations 75
11. Affine infinitesimal transformations and Covariant Derivations 76
12. The group $K_z(L)$ 78
13. Transitive algebra of affine infinitesimal transformations 79
14. The Lie Algebra L 81
15. The case of Finslerian manifolds 84
16. Case of infinitesimal isometries 86

Chapter IV
Geometry of generalized Einstein manifolds

Abstract

I. Comparison theorem
1. The Laplacian defined on the unitary tangent fibre bundle and the Finslerian curvature 89
2. Case of a manifold with constant sectional curvature 95

II. Deformation of the Finslerian metric. Generalized Einstein manifolds
1. Fundamental lemma, Compact case 98
2. Variations of scalar curvatures 101
3. Generalized Einstein manifolds 105
4. Second variationals of the integral $I(g_t)$ 112
5. Case of a conformal infinitesimal deformation 118

Chapter V
I. Properties of compact Finslerian manifolds of non-negative curvature

Abstract
1. Landsberg manifolds 123
2. Finslerian manifolds with minima fibration 125

III. Compact Finslerian manifolds whose indicatrix is an Einstein manifold

1. The first variational of $I(g_t)$ 138
2. Second variational 141

Chapter VI
Finslerian manifolds of constant sectional curvatures

Abstract
I. Isotropic Finslerian manifolds.
Notations and recalls
1. Finslerian manifolds 144
2. Indicatrices 147
3. Isotropic manifolds 150
4. Properties of curvature tensors in the isotropic case 151

II. Finslerian manifolds with constant sectional curvatures
1. Generalization of Schur’s theorem
 A. Case of Berwald connection 153
 B. Case of Finslerian connection 156
2. Necessary and sufficient conditions for an isotropic Finslerian manifold to be of constant sectional curvature 157
Contents

Chapter VIII

Conformal vector fields on the unitary tangent fibre bundle

Abstract

1. The Co-differential of a 2-form
2. A Lemma
3. A characterization of conformal infinitesimal transformations
4. Curvature and Infinitesimal Transformation in the compact case
5. Case when M is compact with scalar curvature \hat{H} is constant
6. Case when $X = X_j (z) \, dx^j$ is semi-closed

References

Index

Chapter VII

Projective vector fields on the unitary tangent fibre bundle

Abstract

1. Infinitesimal projective transformations
2. Other characterizations of infinitesimal projective transformations
3. Curvature and infinitesimal projective transformations
4. Restricted projective vector fields
5. Projective invariants
6. Case when Ricci directional curvature satisfies certain conditions

III. Complete manifolds with constant sectional curvatures

1. Operator D^1 - the isotropic case
2. Complete manifolds with strictly negative constant sectional curvature
3. Complete manifolds with strictly positive constant sectional curvature
4. Complete manifolds with zero sectional curvature

IV. The plane axioms in Finslerian geometry

1. Finslerian submanifolds
2. Induced and intrinsic connections of Berwald
3. Totally geodesic submanifolds
4. The plane axioms

Chapter VI

Projective vector fields on the unitary tangent fibre bundle

Abstract

1. Infinitesimal projective transformations
2. Other characterizations of infinitesimal projective transformations
3. Curvature and infinitesimal projective transformations
4. Restricted projective vector fields
5. Projective invariants
6. Case when Ricci directional curvature satisfies certain conditions

Contents

3. Locally Minkowskian manifolds
4. Compact isotropic manifolds with strictly negative curvature

III. Complete manifolds with constant sectional curvatures

1. Operator D^1 - the isotropic case
2. Complete manifolds with strictly negative constant sectional curvature
3. Complete manifolds with strictly positive constant sectional curvature
4. Complete manifolds with zero sectional curvature

IV. The plane axioms in Finslerian geometry

1. Finslerian submanifolds
2. Induced and intrinsic connections of Berwald
3. Totally geodesic submanifolds
4. The plane axioms

Contents

7. The complete case
8. Case where the Ricci directional curvature is a strictly positive constant.
9. The second variational of the length
10. Homeomorphie to the sphere

Chapter VII

Projective vector fields on the unitary tangent fibre bundle

Abstract

1. Infinitesimal projective transformations
2. Other characterizations of infinitesimal projective transformations
3. Curvature and infinitesimal projective transformations
4. Restricted projective vector fields
5. Projective invariants
6. Case when Ricci directional curvature satisfies certain conditions

Contents

7. The complete case
8. Case where the Ricci directional curvature is a strictly positive constant.
9. The second variational of the length
10. Homeomorphie to the sphere

Contents

162
164
173
175
179
181
182
191
194
197
201
205
210
211
214
216
218
223
225
227
229
234
239
243
246