The Finite Element Method for Solid and Structural Mechanics

Sixth edition

O.C. Zienkiewicz, CBE, FRS
UNESCO Professor of Numerical Methods in Engineering
International Centre for Numerical Methods in Engineering, Barcelona
Previously Director of the Institute for Numerical Methods in Engineering
University of Wales Swansea

R.L. Taylor
Professor in the Graduate School
Department of Civil and Environmental Engineering
University of California at Berkeley
Berkeley, California
# Contents

**Preface**

1. General problems in solid mechanics and non-linearity
   1.1 Introduction 1
   1.2 Small deformation solid mechanics problems 4
   1.3 Variational forms for non-linear elasticity 12
   1.4 Weak forms of governing equations 14
   1.5 Concluding remarks 15
   References 15

2. Galerkin method of approximation – irreducible and mixed forms
   2.1 Introduction 17
   2.2 Finite element approximation – Galerkin method 17
   2.3 Numerical integration – quadrature 22
   2.4 Non-linear transient and steady-state problems 24
   2.5 Boundary conditions: non-linear problems 28
   2.6 Mixed or irreducible forms 33
   2.7 Non-linear quasi-harmonic field problems 37
   2.8 Typical examples of transient non-linear calculations 38
   2.9 Concluding remarks 43
   References 44

3. Solution of non-linear algebraic equations
   3.1 Introduction 46
   3.2 Iterative techniques 47
   3.3 General remarks – incremental and rate methods 58
   References 60

4. Inelastic and non-linear materials
   4.1 Introduction 62
   4.2 Viscoelasticity – history dependence of deformation 63
   4.3 Classical time-independent plasticity theory 72
   4.4 Computation of stress increments 80
8.4 Connecting a rigid body to a flexible body 234
8.5 Multibody coupling by joints 237
8.6 Numerical examples 240
References 242

9. Discrete element methods 245
9.1 Introduction 245
9.2 Early DEM formulations 247
9.3 Contact detection 250
9.4 Contact constraints and boundary conditions 256
9.5 Block deformability 260
9.6 Time integration for discrete element methods 267
9.7 Associated discontinuous modelling methodologies 270
9.8 Unifying aspects of discrete element methods 271
9.9 Concluding remarks 272
References 273

10. Structural mechanics problems in one dimension – rods 278
10.1 Introduction 278
10.2 Governing equations 279
10.3 Weak (Galerkin) forms for rods 285
10.4 Finite element solution: Euler–Bernoulli rods 290
10.5 Finite element solution: Timoshenko rods 305
10.6 Forms without rotation parameters 317
10.7 Moment resisting frames 319
10.8 Concluding remarks 320
References 320

11. Plate bending approximation: thin (Kirchhoff) plates and $C_1$ continuity requirements 323
11.1 Introduction 323
11.2 The plate problem: thick and thin formulations 325
11.3 Rectangular element with corner nodes (12 degrees of freedom) 336
11.4 Quadrilateral and parallelogram elements 340
11.5 Triangular element with corner nodes (9 degrees of freedom) 340
11.6 Triangular element of the simplest form (6 degrees of freedom) 345
11.7 The patch test – an analytical requirement 346
11.8 Numerical examples 348
11.9 General remarks 357
11.10 Singular shape functions for the simple triangular element 357
11.11 An 18 degree-of-freedom triangular element with conforming shape functions 360
11.12 Compatible quadrilateral elements 361
11.13 Quasi-conforming elements 362
11.14 Hermitian rectangle shape function 363
11.15 The 21 and 18 degree-of-freedom triangle 364
11.16 Mixed formulations – general remarks 366
11.17 Hybrid plate elements 368
11.18 Discrete Kirchhoff constraints 369
11.19 Rotation-free elements 371
11.20 Inelastic material behaviour 374
11.21 Concluding remarks – which elements? 376
References 376

12. ‘Thick’ Reissner–Mindlin plates – irreducible and mixed formulations 382
12.1 Introduction 382
12.2 The irreducible formulation – reduced integration 385
12.3 Mixed formulation for thick plates 390
12.4 The patch test for plate bending elements 392
12.5 Elements with discrete collocation constraints 397
12.6 Elements with rotational bubble or enhanced modes 405
12.7 Linked interpolation – an improvement of accuracy 408
12.8 Discrete ‘exact’ thin plate limit 413
12.9 Performance of various ‘thick’ plate elements – limitations of thin plate theory 415
12.10 Inelastic material behaviour 419
12.11 Concluding remarks – adaptive refinement 420
References 421

13. Shells as an assembly of flat elements 426
13.1 Introduction 426
13.2 Stiffness of a plane element in local coordinates 428
13.3 Transformation to global coordinates and assembly of elements 429
13.4 Local direction cosines 431
13.5 ‘Drilling’ rotational stiffness – 6 degree-of-freedom assembly 435
13.6 Elements with mid-side slope connections only 440
13.7 Choice of element 440
13.8 Practical examples 441
References 450

14. Curved rods and axisymmetric shells 454
14.1 Introduction 454
14.2 Straight element 454
14.3 Curved elements 461
14.4 Independent slope–displacement interpolation with penalty functions (thick or thin shell formulations) 468
References 473

15. Shells as a special case of three-dimensional analysis – Reissner–Mindlin assumptions 475
15.1 Introduction 475
15.2 Shell element with displacement and rotation parameters 475
15.3 Special case of axisymmetric, curved, thick shells 484
15.4 Special case of thick plates 487
18.17 Numerically developed global self-consistent elastic-plastic constitutive law 580
18.18 Global solution and stress-recovery procedure 581
18.19 Concluding remarks 586
References 587

19. Computer procedures for finite element analysis 590
19.1 Introduction 590
19.2 Solution of non-linear problems 591
19.3 Eigensolutions 592
19.4 Restart option 594
19.5 Concluding remarks 595
References 595

Appendix A Isoparametric finite element approximations 597
Appendix B Invariants of second-order tensors 604
Author index 609
Subject index 619