ELECTRON MICROPROBE ANALYSIS AND SCANNING ELECTRON MICROSCOPY IN GEOLOGY

S. J. B. REED

University of Cambridge
Contents

Preface xi
Acknowledgments xiii

1 Introduction 1
1.1 Electron microprobe analysis 1
1.2 Scanning electron microscopy 1
1.2.1 Use of SEM for analysis 2
1.3 Geological applications of SEM and EMPA 2
1.4 Related techniques 4
1.4.1 Analytical electron microscopy 4
1.4.2 Proton-induced X-ray emission 4
1.4.3 X-ray fluorescence analysis 5
1.4.4 Auger analysis 5
1.4.5 Ion microprobe analysis 6
1.4.6 Laser microprobe methods 6

2 Electron–specimen interactions 7
2.1 Introduction 7
2.2 Inelastic scattering 7
2.2.1 Electron range 8
2.3 Elastic scattering 8
2.3.1 Backscattering 9
2.4 Secondary-electron emission 11
2.5 X-ray production 11
2.5.1 The continuous X-ray spectrum 12
2.5.2 Characteristic X-ray spectra 12
2.6 X-ray absorption 16
2.7 The Auger effect and fluorescence yield 17
2.8 Cathodoluminescence 17
2.9 Specimen heating 19

3 Instrumentation 21
3.1 Introduction 21
3.2 The electron gun 21
 3.2.1 High-brightness electron sources 23
3.3 Electron lenses 23
 3.3.1 Aberrations 25
 3.3.2 Apertures 27
3.4 Beam diameter and current 27
3.5 Column alignment 27
3.6 Beam current monitoring 28
3.7 Beam scanning 29
3.8 The specimen stage 30
3.9 The optical microscope 32
3.10 Vacuum systems 33
 3.10.1 Contamination 34
 3.10.2 Low-vacuum or environmental SEM 34
3.11 Electron detectors 35
 3.11.1 Secondary-electron detectors 35
 3.11.2 Backscattered-electron detectors 36
3.12 Detection of other types of signal 37
 3.12.1 Auger electrons 37
 3.12.2 Cathodoluminescence 38
 3.12.3 Electron backscatter diffraction 40

4 Scanning electron microscopy 41
4.1 Introduction 41
4.2 Magnification and resolution 41
4.3 Focussing 42
 4.3.1 Working distance 42
4.4 Topographic images 43
 4.4.1 Secondary-electron images 43
 4.4.2 Topographic contrast in BSE images 45
 4.4.3 Spatial resolution 49
 4.4.4 Depth of focus 52
 4.4.5 Stereoscopic images 52
 4.4.6 Environmental SEM 53
4.5 Compositional images 54
4.5.1 Atomic-number discrimination in BSE images 55
4.5.2 Spatial resolution in BSE images 57
4.5.3 The application of etching 60

4.6 Image defects 61
4.6.1 Statistical noise 61
4.6.2 Specimen charging 62
4.6.3 Stray field and vibration 62
4.6.4 Astigmatism 63
4.6.5 Coating artefacts 63

4.7 Image enhancement 63
4.7.1 Digital image processing 65
4.7.2 False colours 67

4.8 Other types of image 68
4.8.1 Absorbed-current images 68
4.8.2 Magnetic-contrast images 68
4.8.3 Electron backscatter diffraction images 69
4.8.4 Cathodoluminescence images 69
4.8.5 Charge-contrast images 72
4.8.6 Scanning Auger images 73

5 X-ray spectrometers 76
5.1 Introduction 76
5.2 Energy-dispersive spectrometers 76
5.2.1 Solid-state X-ray detectors 76
5.2.2 Energy resolution 78
5.2.3 Detection efficiency 79
5.2.4 Pulse processing and dead-time 80
5.2.5 Spectrum display 82
5.2.6 Artefacts in ED spectra 84
5.3 Wavelength-dispersive spectrometers 86
5.3.1 Bragg reflection 86
5.3.2 Focussing geometry 88
5.3.3 Design of WD spectrometers 90
5.3.4 Proportional counters 92
5.3.5 Pulse counting and dead-time 94
5.4 Comparison between ED and WD spectrometers 95

6 Element mapping 97
6.1 Introduction 97
6.2 Digital mapping 97
Contents

6.3 EDS mapping 98
6.4 WDS mapping 100
6.5 Quantitative mapping 100
6.6 Statistics and noise in maps 102
6.7 Colour maps 102
6.8 Modal analysis 103
6.9 Line scans 106
6.10 Three-dimensional maps 106

7 X-ray analysis (1) 107
 7.1 Introduction 107
 7.2 Pure-element X-ray spectra 107
 7.3 Element identification 110
 7.4 Mineral identification 112
 7.5 Quantitative WD analysis 112
 7.5.1 Background corrections 114
 7.5.2 Overlap corrections 114
 7.5.3 Uncorrected concentrations 115
 7.6 Quantitative ED analysis 117
 7.6.1 Background corrections in ED analysis 117
 7.6.2 Measuring peak intensities in ED analysis 117
 7.6.3 Comparison between ED and WD analysis 118
 7.7 Matrix corrections 119
 7.7.1 Atomic-number corrections 119
 7.7.2 Absorption corrections 120
 7.7.3 Fluorescence corrections 121
 7.7.4 Alpha coefficients 123
 7.7.5 The accuracy of matrix corrections 123
 7.8 Correction programs 124
 7.8.1 Unanalysed elements 124
 7.9 Treatment of results 125
 7.9.1 Polyvalency 126
 7.9.2 Mineral formulae 127
 7.9.3 Data presentation 128
 7.10 Standards 128
 7.10.1 Standardless analysis 132

8 X-ray analysis (2) 133
 8.1 Light-element analysis 133
 8.1.1 Chemical bonding effects 134
Contents

8.1.2 Absorption corrections for light elements 135
8.1.3 Application of multilayers 135

8.2 Low-voltage analysis 136

8.3 Choice of conditions for quantitative analysis 136

8.4 Counting statistics 137
8.4.1 Homogeneity 138

8.5 Detection limits 139

8.6 The effect of the conductive coating 139

8.7 Beam damage 140
8.7.1 Heating 140
8.7.2 Migration of alkalis etc. 141

8.8 Boundary effects 143

8.9 Special cases 143
8.9.1 Tilted specimens 144
8.9.2 Broad-beam analysis 144
8.9.3 Particles 145
8.9.4 Rough and porous specimens 146
8.9.5 Thin specimens 146
8.9.6 Fluid inclusions 147
8.9.7 Analysis in low vacuum 148

9 Sample preparation 149
9.1 Initial preparation of samples 149
9.1.1 Cleaning 149
9.1.2 Drying 149
9.1.3 Impregnation 150
9.1.4 Replicas and casts 150
9.1.5 Cutting rock samples 151

9.2 Mounting 152
9.2.1 The SEM ‘stub’ 152
9.2.2 Embedding 152
9.2.3 Thin sections 153
9.2.4 Grain mounts 153
9.2.5 Standards 154

9.3 Polishing 155
9.4 Etching 155

9.5 Coating 156
9.5.1 Carbon coating 157
9.5.2 Metal evaporation 158
9.5.3 Sputter coating 158
Contents

9.5.4 Removing coatings 159
9.6 Marking specimens 160
 9.6.1 Specimen ‘maps’ 160
9.7 Specimen handling and storage 161

Appendix 162
References 179
Index 187

The colour plates are situated between pages 96 and 97.