Contents

Preface xi

Chapter 1: Introduction 1
1.1 Chemical Composition of the Ocean 1
1.2 Distribution of Chemicals in the Ocean 7
1.3 Chapter Conclusion and Outline of Book 15

Problems 16

Chapter 2: Tracer Conservation and Ocean Transport 19
2.1 Tracer Conservation Equation 19
 Advection and Diffusion Components 19
 Application to Box Models 22
2.2 Wind-Driven Circulation 23
 Equations of Motion 27
 Ekman Transport 28
 Gyre Circulation 30
2.3 Wind-Driven Circulation in the Stratified Ocean 33
 Basic Concepts 34
 Ocean Stratification 34
 Geostrophic Equations 37
 Gyre Circulation with Stratification 37
 Insights from the Potential Vorticity Distribution 38
 Insights from Tracers 39
 Insights from the Thermal Wind Relationship 42
2.4 Deep Ocean Circulation 46
 Observations 46
 Models 52
 Summary of Deep Ocean Circulation 57
2.5 Time-Varying Flows 59
 Mesoscale Variability 60
 Interannual to Decadal Variability 61
 Tropical Variability 61
 Extratropical Variability 66

Problems 69
Chapter 5: Organic Matter Export and Remineralization

5.1 Introduction
- Nutrient and Oxygen Distributions
- Remineralization Reactions
- Preformed and Remineralized Components
- Dissolved and Particulate Organic Matter
- Outline

5.2 Oxygen
- Separation of Preformed and Remineralized Components
- Deep Ocean Oxygen Utilization Rates
- Thermocline Oxygen Utilization Rates

5.3 Nitrogen and Phosphorus
- Stoichiometric Ratios
- Phosphate
- The Nitrogen Cycle
 - N^* as a Tracer of Denitrification
 - N^* as a Tracer of N_2 Fixation
 - The Oceanic Nitrogen Budget
- Nitrous Oxide

5.4 Organic Matter Cycling
- Particulate Organic Matter
 - Overview
 - Particle Flux
 - The Role of Ballast
 - Particle Remineralization
 - Models of Particle Interactions
- Dissolved Organic Matter

5.5 Models
- Model Development
- Sensitivity Studies
- Applications: Control of Oceanic Oxygen
- Problems

Chapter 6: Remineralization and Burial in the Sediments

6.1 Introduction
- Observations
- Sediment Properties and Processes
- Remineralization Reactions

6.2 Sediment Diagenesis Models
- Pore Waters
- Solids

6.3 Remineralization
- Oxic Sediments
- Anoxic Sediments
- Dissolved Organic Carbon

6.4 Burial
- The Substrate
- The Oxidant
Chapter 9: Calcium Carbonate Cycle

9.1 Introduction 359
9.2 Production 362
Organisms 362
Export Estimates 363
Inorganic-to-Organic Carbon Export Ratio 363
9.3 Water Column Processes 365
\(\text{CaCO}_3 \) Solubility 365
Variations in Saturation State 368
Carbonate Ion Distribution 368
Water Column Dissolution 371
9.4 Diagenesis 374
\(\text{CaCO}_3 \) Dissolution in Sediments 374
Modeling \(\text{CaCO}_3 \) Diagenesis 379
Model Applications 379
Concluding Remarks 384
9.5 Calcium Carbonate Compensation 384
\(\text{CaCO}_3 \) Homeostat 384
\(\text{CaCO}_3 \) Compensation 386
Problems 389

Chapter 10: Carbon Cycle, \(\text{CO}_2 \), and Climate

10.1 Introduction 392
Greenhouse Effect 394
Global Warming 396
Outline 398
10.2 The Anthropogenic Perturbation 399
Capacity Constraints 400
Buffering by Dissolved Carbonate 400
Buffering by Sediment \(\text{CaCO}_3 \) 401
Buffering by Weathering 402
Kinetic Constraints 402
Atmospheric Pulse Response 402
Ocean Uptake and Buffering with Dissolved Carbonate 403
Buffering by Sediment \(\text{CaCO}_3 \) 405
Anthropogenic \(\text{CO}_2 \) Uptake 405
Direct Estimation 406
Reconstruction of Anthropogenic \(\text{CO}_2 \) Inventory 408
The Atmospheric Oxygen Method 413
The Role of Biology 414
Future \(\text{CO}_2 \) Uptake 415
10.3 Interannual to Decadal Timescale Variability 417
Tropical Variability 419
Extratropical Variability 423
10.4 Glacial-Interglacial Atmospheric \(\text{CO}_2 \) Changes 429
Setting the Scene 431
Terrestrial Biosphere Carbon Loss 431
Salinity Changes 432
Temperature Changes 434