Ken Freeman and Geoff McNamara

In Search of Dark Matter
Table of contents

Authors’ preface ix
List of illustrations xi
Prologue: the quest for darkness xiii

1 HOW TO WEIGH GALAXIES 1

- Introduction 1
- How to weigh galaxies 2
- Newtonian gravitation and finding the invisible 2
- How to measure stellar motions 4
- How galaxies stay inflated 6
- Circular motion 7
- Random motion 7
- The Jeans equations 7
- Mass-luminosity relationship 9
- Gravitational versus luminous mass 10

2 THE FALSE DAWN 11

- Historical background 11
- Introducing Oort 12
- Oort discovers differential rotation 14
- Oort ‘discovers’ disk dark matter 15
- The problem with K stars 16
- Thin disk and thick disk 17
- Bahcall and the resurgence of interest in disk dark matter 17
- Oort’s error revealed 18
- Not the end of disk dark matter 18

3 SEEING THE INVISIBLE 21

- Introducing Zwicky 21
- Galaxy clusters 25
- Zwicky and Abell cluster catalogues 25
- The Coma Cluster 27
- Measuring cluster ‘pressure’ 28
<table>
<thead>
<tr>
<th>Table of contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Virial theorem</td>
<td>29</td>
</tr>
<tr>
<td>Mass-luminosity relationship</td>
<td>30</td>
</tr>
<tr>
<td>Results of studying the Coma and Virgo Clusters</td>
<td>31</td>
</tr>
<tr>
<td>Contrast between Oort and Zwicky</td>
<td>32</td>
</tr>
<tr>
<td>4 DARK HALOS</td>
<td>35</td>
</tr>
<tr>
<td>How to measure dark matter halos</td>
<td>35</td>
</tr>
<tr>
<td>Beyond the visible disk: the 21-cm line</td>
<td>36</td>
</tr>
<tr>
<td>The first signs of trouble</td>
<td>37</td>
</tr>
<tr>
<td>How to suppress bar structures</td>
<td>38</td>
</tr>
<tr>
<td>The 21-cm limit</td>
<td>39</td>
</tr>
<tr>
<td>Beyond the 21-cm limit</td>
<td>40</td>
</tr>
<tr>
<td>Dark matter in elliptical galaxies</td>
<td>41</td>
</tr>
<tr>
<td>Importance of planetary nebulae</td>
<td>42</td>
</tr>
<tr>
<td>Shape of the dark matter halo</td>
<td>43</td>
</tr>
<tr>
<td>Flaring of the hydrogen disk</td>
<td>44</td>
</tr>
<tr>
<td>5 WE ARE SURROUNDED!</td>
<td>49</td>
</tr>
<tr>
<td>Rotation curve of the Milky Way</td>
<td>49</td>
</tr>
<tr>
<td>Escape velocity argument (halo stars)</td>
<td>49</td>
</tr>
<tr>
<td>Objective prism reveals halo stars</td>
<td>50</td>
</tr>
<tr>
<td>Proper motions reveal halo stars</td>
<td>51</td>
</tr>
<tr>
<td>Looking for halo stars in the halo</td>
<td>52</td>
</tr>
<tr>
<td>Timing argument</td>
<td>53</td>
</tr>
<tr>
<td>The Magellanic Clouds and Galactic dark matter</td>
<td>54</td>
</tr>
<tr>
<td>Dark matter in the Large Magellanic Cloud</td>
<td>58</td>
</tr>
<tr>
<td>6 PIECES OF THE BIG BANG</td>
<td>59</td>
</tr>
<tr>
<td>About dwarf galaxies</td>
<td>59</td>
</tr>
<tr>
<td>Aaronson's pioneering work</td>
<td>59</td>
</tr>
<tr>
<td>The density of dark halos: Kormendy and Freeman's work</td>
<td>60</td>
</tr>
<tr>
<td>Observing dwarf galaxies</td>
<td>60</td>
</tr>
<tr>
<td>Dark matter in dwarf galaxies</td>
<td>61</td>
</tr>
<tr>
<td>Why do dwarf galaxies have so much dark matter?</td>
<td>64</td>
</tr>
<tr>
<td>Is there a large population of undiscovered dark galaxies?</td>
<td>65</td>
</tr>
<tr>
<td>What should we look for?</td>
<td>66</td>
</tr>
<tr>
<td>Lack of dark matter in globular clusters still a mystery</td>
<td>67</td>
</tr>
<tr>
<td>7 COSMIC MIRAGES</td>
<td>69</td>
</tr>
<tr>
<td>How gravity deflects starlight</td>
<td>69</td>
</tr>
<tr>
<td>The mechanics of gravitational lensing</td>
<td>72</td>
</tr>
<tr>
<td>The Einstein radius</td>
<td>72</td>
</tr>
<tr>
<td>Probability of lensing events</td>
<td>73</td>
</tr>
<tr>
<td>Using gravitational lensing to measure dark matter</td>
<td>75</td>
</tr>
<tr>
<td>Strong lensing and the Hubble constant</td>
<td>75</td>
</tr>
</tbody>
</table>
Table of contents

Weak lensing 77
Abell 2218 77

8 THE BARYON INVENTORY 83
- Ω (omega) as a common unit of measurement 83
- Ω_b 84
- Big Bang Nucleosynthesis 84
- Observing baryonic matter 85
- Observing Ω_b 86
- Ω_b at $z = 3$ 86
- Ω_b in the present epoch 87
- Does Ω_b match up? 87
- Unseen baryonic matter? 88
- Baryonic matter in groups and clusters of galaxies 88
- The baryon catastrophe 89
- Virgo and Coma baryonic matter compared 90

9 MACHO ASTRONOMY 93
- Historical build-up 93
- The Great Melbourne Telescope 96
- Software development 98
- The first MACHO event 98
- Looking at the centre of the Galaxy 100
- Results 100
- Problems and uncertainties 100
- Magellanic Stream debris 101
- Variable stars, if nothing else 102
- Searching for extrasolar planets 102
- The future of MACHO 102

10 WHAT CAN THE MATTER BE? 105
- Baryonic dark matter: why it is suspected 105
- Faint stars 105
- Small hydrogen snowballs 106
- Massive black holes 106
- Small black holes 108
- Small dense clouds 109
- Brown dwarfs 110
- Primordial black holes 110
- Between the galaxies 111
- How to find intracluster stars 112
- Intracluster gas 114
- Milgrom’s alternative theory of gravity 114
Table of contents

11 EXPLORING EXOTICA: NEUTRINOS
- Why non-baryonic dark matter is suspected 117
- Classes of non-baryonic dark matter 119
- Neutrinos 120

12 EXPLORING EXOTICA: WIMPS AND AXIONS
- WIMPs 123
- Fundamental forces and supersymmetry 124
- Supersymmetry 125
- Neutralinos 125
- WIMP searches 126
- Axions 126

13 IN THE BEGINNING...
- Hot and cold dark matter 131
- Creation of large-scale structure 132
- Cosmic microwave background 133
- HDM or CDM? 135

14 TOWARDS OMEGA
- Critical density preferred 139
- An accelerating Universe: dark energy 140
- What is the cosmological constant? 141
- What is vacuum energy? 141
- Cosmological parameters 143
- Constraining Ω_b, Ω_m and Ω_Λ 143
- Could this be it? 145

Appendix 1 What is matter?
- Definition of matter 147
- Macroscopic: cells 148
- Molecules 148
- Elements 149
- Atoms 149
- Structure of the atom: electrons, protons and neutrons 149
- Quarks 150
- Leptons 150
- Energy 150

Appendix 2 Expressing mass

Index
