Information Theory and Stochastics for Multiscale Nonlinear Systems

Andrew J. Majda
Rafail V. Abramov
Marcus J. Grote

The Centre de Recherches Mathématiques (CRM) of the Université de Montréal was created in 1968 to promote research in pure and applied mathematics and related disciplines. Among its activities are special theme years, summer schools, workshops, postdoctoral programs, and publishing. The CRM is supported by the Université de Montréal, the Province of Québec (FCAR), and the Natural Sciences and Engineering Research Council of Canada. It is affiliated with the Institut des Sciences Mathématiques (ISM) of Montréal, whose constituent members are Concordia University, McGill University, the Université de Montréal, the Université du Québec à Montréal, and the École Polytechnique. The CRM may be reached on the Web at www.crm.umontreal.ca.
Contents

Overview on Multiscale Modeling in Complex Nonlinear Systems ... v
References ... vii

Chapter 1. Information Theory, Predictability, Jupiter’s Great Red Spot, and
Equilibrium Statistical Mechanics ... 1
 1.1. Introduction to information theory .. 1
 1.2. Equations for basic geophysical flows .. 4
 1.3. Information theory and equilibrium statistical mechanics for complex nonlinear systems ... 5
 1.4. A systematic mathematical strategy for coarse-grained equilibrium statistical predictions .. 13
 1.5. Application to predicting Jupiter’s Great Red Spot ... 17
 1.6. Information theory and predictability for complex nonlinear systems 18
References ... 22

Chapter 2. The Fluctuation-Dissipation Theorem for Complex Nonlinear Systems 25
 2.1. Introduction .. 25
 2.2. Derivation of the fluctuation-dissipation theorem ... 27
 2.3. Information flow in the response to small external perturbations 31
 2.4. The fluctuation-dissipation theorem and ensemble predictions near equilibrium 35
 2.5. Computational strategies for applying and testing the validity of the
 fluctuation-dissipation theorem ... 37
 2.6. Three chaotic nonlinear systems demonstrating the validity of FDT 39
 2.7. The quasi-Gaussian approximation for FDT in forced, damped nonlinear systems 66
 2.8. The Lorenz 96 model: A forced dissipative nonlinear system for testing FDT
 approximations ... 69
 2.9. Nonlinear functionals and FDT .. 94
 2.10. Future research directions for FDT in complex nonlinear systems 102
References ... 104

Chapter 3. Mathematical Strategies for Stochastic Mode Reduction in Climate 105
 3.1. Introduction to stochastic climate modeling ... 105
 3.2. Intrinsic stochastic noise in deterministic dynamical systems 108
 3.3. The MTV strategy for stochastic mode reduction ... 109
 3.4. A simple model for the competition between intrinsic stochastic noise and
deterministic dynamics ... 111
CONTENTS

3.5. Explicit stochastic mode reduction in the model 112
3.6. Bifurcation theory in the projected deterministic dynamics 115
3.7. Additive and multiplicative stochastic noise and projected deterministic dynamics 118
3.8. Summary and discussion 126
Appendix 130
References 131