The Dynamics of a

Carabus auronitens Population

Subject to a Powerful Abiotic Key Factor

Robert Baumgartner
Malte Prigge
Udo Heimbach
Friedrich Weber

Heft 398
Berlin 2005
Contents

Abbreviations frequently used in text and legends 7
A. Introduction .. 9
B. Material and Methods .. 14
 B. I. Methods of investigation, computation, statistics and documentation of data 14
 B. I.1. (2.4) Individual parameters .. 14
 B. I.2. (2.6; 2.7) Calculation of net reproductive rate and estimate of abundance 14
 B. I.3. (2.14) Statistics .. 18
 B. I.4. Simulation of the fluctuation of net reproductive rate and parameters of the female stock 18
 B. I.5. (2.16) Documentation. ... 19
 B. II. Corrections .. 19
 B. III. Life history of Carabus auronitens in the population studied 19
 B. IV. Advantages and disadvantages of studying population dynamics in Carabus auronitens 20
C. Results .. 21
 C. I. Reproductive investment .. 21
 C. I.1. Net reproductive rate .. 21
 C. I.2. Weight increase of females in spring (intensity of oogenesis) 21
 C. I.3. Level of activity of males in spring (mate searching activity) 25
 C. I.4. Multiple regression of net reproductive rate on biotic key factors of reproduction 25
 C. II. Post-reproductive "recreation" in late spring 26
 C. III. Probability of survival in spring .. 29
 C. III.1. Survival of females .. 29
 C. III.2. Survival of males ... 30
 C. IV. Temperature in spring - a key factor in the dynamics of the Carabus auronitens population studied 30
 C. IV.1. The influence of temperature on net reproductive rate 30
 C. IV.2. Periodogram analysis of the fluctuations in critical temperature, PTi, and net reproductive rate 32
 C. IV.3. The effect of temperature on the weight increase of females (oogenesis) 35
 C. IV.4. The effect of temperature on the activity of males 37
 C. IV.5. Multiple regression of net reproductive rate on temperature 38

C. IV.6. The effect of temperature on post-reproductive "recreation" 38
C. IV.7. Weak influences of temperature on survival in spring 40
C. IV.8. Dependence of the sex ratio in spring i on temperature in previous springs 40
C. V. The influence of abundance on beetles in spring 42
C. V.1. Abundance and food availability 42
C. V.2. Abundance and net reproductive rate 44
C. V.3. Abundance and the reproductive investment of females 48
C. V.4. Abundance and the reproductive investment of males 50
C. V.5. Tests for influence of abundance on survival and post-reproductive "recreation" 50
C. V.6. Summary of the effects of abundance on the population dynamics of Carabus auronitens in spring 53
C. VI. Survival and other traits of young individuals 54
C. VI.1. Dependence of survival of young on traits expressed after emerging 54
C. VI.2. Relationship between abundance of young and their traits 56
C. VI.3. Dependence of survival of young in autumn i on temperature in spring i 57
C. VI.4. Dependence of survival of young on biotic factors affecting the parental stock 59
C. VI.5. Do parental females affect the reproductive investment of 0.5 year old females? 59
C. VII. The expectation periodicity - an endogenous adaptation to the 4 year periodicity in the temperature critical for early development (PTi)? 60
C. VII.1. The phenomenon 60
C. VII.2. Critical tests of the distinct influence of the expectation periodicity on Bi 65
C. VII.3. The model 67
C. VII.4. Are reproductive investment and the probability of survival of females and males under the influence of BEVi? 68
C. VII.5. Is the survival of the young affected by BEVi? 70
C. VII.6. Do the empirical data fit the model? 70
C. VIII. Simulation of the expectation periodicity and female population structure 73
C. VIII.1. Conditions for simulating the expectation periodicity (simulations A - E) 73
C. VIII.2. The steady state (simulation F) 77
C. VIII.3. Is an adapted expectation periodicity expressed when the period of PTi is longer than 6 years (simulation G)? 78
C. VIII.4. Simulation of the generation structure (simulation H) 79
C. VIII.5. Comparison of the simulations 83
C. VIII.6. Conclusions and critical questions 84
The dynamics of a *Carabus auronitens* population

C. IX. The field data in the light of the simulation results 84
C. IX.1. Should the hypothesis regarding the role of density-dependence be maintained? 84
C. IX.2. Further support for the "reward" (trade-off) hypothesis: negative correlations between reproduction and survival 88

D. Discussion 89
D. I. Criticisms of field studies and simulations 89
D. II. Density-dependent dynamics in carabid populations? 91
D. III. A new synthesis: density-dependent enhancement of risk spreading 93
D. III.1. Exogenous key factors in the dynamics of the *Carabus auronitens* population 93
D. III.2. Is there an endogenous mechanism in the *Carabus auronitens* population, which adapts the dynamics to a periodically fluctuating exogenous key factor? 94
D. III.3. Possible physiological mechanisms of the "reward", a trade-off between reproduction and longevity 95
D. III.4. The pheromone mediated interference hypothesis 96
D. III.5. The likelihood of an expectation periodicity evolving 97
D. III.6. A concise description of the model of "density-dependent reinforcement of risk spreading" 99

D. IV. Possibilities of experimental falsifications 99

E. Appendices 102
F. Summary 105
G. References 106
H. Acknowledgements 111