AN INTRODUCTION TO
MEASURE—THEORETIC
PROBABILITY

George G. Roussas
University of California, Davis
TABLE OF CONTENTS

PREFACE ... xi

CHAPTER 1: Certain Classes of Sets, Measurability, and Pointwise Approximation ... 1
 1. Measurable spaces ... 1
 2. Product measurable spaces .. 8
 3. Measurable functions and random variables ... 11
 Exercises .. 20

CHAPTER 2: Definition and Construction of a Measure and Its Basic Properties ... 29
 1. About measures in general, and probability measures in particular 29
 2. Outer measures .. 33
 3. The Carathéodory extension theorem ... 39
 4. Measures and (point) functions .. 43
 Exercises .. 48

CHAPTER 3: Some Modes of Convergence of Sequences of Random Variables and Their Relationships 55
 1. Almost everywhere convergence and convergence in measure 55
 2. Convergence in measure is equivalent to mutual convergence in measure .. 60
 Exercises .. 67

CHAPTER 4: The Integral of a Random Variable and Its Basic Properties ... 71
 1. Definition of the integral .. 71
 2. Basic properties of the integral .. 76
 3. Probability distributions ... 84
 Exercises .. 86
CHAPTER 5: Standard Convergence Theorems, the Fubini Theorem

1. Standard convergence theorems and some of their ramifications...................... 89
2. Sections, Product Measure Theorem, the Fubini Theorem............................ 102
Exercises ... 114

CHAPTER 6: Standard Moment and Probability Inequalities, Convergence in the rth Mean and Its Implications...... 119

1. Moment and probability inequalities... 119
2. Convergence in the rth mean, uniform continuity, uniform integrability, and their relationships .. 127
Exercises ... 141

CHAPTER 7: The Hahn–Jordan Decomposition Theorem, the Lebesgue Decomposition Theorem, and the Radon–Nikodym Theorem

1. The Hahn–Jordan Decomposition Theorem... 147
2. The Lebesgue Decomposition Theorem.. 153
3. The Radon–Nikodym Theorem ... 161
Exercises ... 165

CHAPTER 8: Distribution Functions and Their Basic Properties, Helly–Bray Type Results

1. Basic properties of distribution functions ... 167
2. Weak convergence and compactness of a sequence of distribution functions .. 175
3. Helly–Bray type theorems for distribution functions................................. 179
Exercises ... 184

CHAPTER 9: Conditional Expectation and Conditional Probability, and Related Properties and Results

1. Definition of conditional expectation and conditional probability 187
2. Some basic theorems about conditional expectations and conditional probabilities .. 192
3. Convergence theorems and inequalities for conditional expectations 194
4. Further properties of conditional expectations and conditional probabilities .. 204
Exercises ... 211
CHAPTER 10: Independence

1. Independence of events, σ-fields, and random variables 217
2. Some auxiliary results 220
3. Proof of Theorem 1, and of Lemma 1 in Chapter 9 227

Exercises 229

CHAPTER 11: Topics from the Theory of Characteristic Functions

1. Definition of the characteristic function of a distribution and basic properties 236
2. The inversion formula 238
3. Convergence in distribution and convergence of characteristic functions—the Paul Lévy continuity theorem 246
4. Convergence in distribution in the multidimensional case—the Cramér–Wold device 253
5. Convolutions of distribution functions and related results 256
6. Some further properties of characteristic functions 262
7. Applications to the Weak Law of Large Numbers and the Central Limit Theorem 271
8. The moments of a random variable determine its distribution 273
9. Some basic concepts and results from complex analysis employed in the proof of Theorem 11 278

Exercises 282

CHAPTER 12: The Central Limit Problem: The Centered Case

1. Convergence to the normal law (Central Limit Theorem, CLT) 290
2. Limiting laws of $L(S_n)$ under conditions (C) 295
3. Conditions for the Central Limit Theorem to hold 304
4. Proof of results in Section 2 314

Exercises 321

CHAPTER 13: The Central Limit Problem: The Noncentered Case

1. Notation and preliminary discussion 326
2. Limiting laws of $L(S_n)$ under conditions (C'') 328
3. Two special cases of the limiting laws of $L(S_n)$ 334

Exercises 342
CHAPTER 14: Topics from Sequences of Independent Random Variables
- Kolmogorov inequalities .. 346
- More important results toward proving the Strong Law of Large Numbers .. 352
- Statement and proof of the Strong Law of Large Numbers 362
- A version of the Strong Law of Large Numbers for random variables with infinite expectation 370
- Some further results on sequences of independent random variables 374
- Exercises .. 381

CHAPTER 15: Topics from Ergodic Theory 383
- Stochastic processes, the coordinate process, stationary process, and related results 384
- Measure-preserving transformations, the shift transformation, and related results 388
- Invariant and almost sure invariant sets relative to a transformation and related results 393
- Measure-preserving ergodic transformations, Invariant random variables relative to a transformation and related results 399
- The Ergodic Theorem, preliminary results 401
- Invariant sets and random variables relative to a process, formulation of the Ergodic Theorem in terms of a stationary process, ergodic processes .. 410
- Exercises .. 418

Appendix .. 421
Selected References .. 431
Index ... 433