Development of Pedotransfer Functions in Soil Hydrology

Edited by

Ya. Pachepsky
USDA-ARS Environmental Microbial Safety Laboratory
Beltsville, MD, USA

W.J. Rawls
USDA-ARS Hydrology and Remote Sensing Laboratory
Beltsville, MD, USA

2004
CONTENTS

Foreword v

Preface vii

Contributors xvii

Part I. Methods to Develop Pedotransfer Functions

Chapter 1. Statistical Regression
H. Vereecken and M. Herbst

1. Objectives of Statistical Regressions 3
2. Preliminary Analysis of Soil Data 4
 2.1. Simple data analysis 4
 2.2. Multivariate methods 7
3. Model Building 9
 3.1. Model fit 12
 3.2. Poor model specification 14
 3.3. Confidence intervals on estimated soil properties values 15
 3.4. Outlier detection 15
4. Validation of Regression Models 16
5. Summary 17
References 18

Chapter 2. Data Mining and Exploration Techniques
Ya. Pachepsky and M.G. Schaap

1. Artificial Neural Networks 21
2. Group Method of Data Handling 24
3. Regression Trees 26
4. Cross-Validation Procedures 29
5. Concluding Remarks 29
References 30

Chapter 3. Accuracy and Uncertainty in PTF Predictions
M.G. Schaap

1. Optimization Criteria 33
2. Criteria for Evaluating the Accuracy of PTFs 36
3. Evaluating the Uncertainty of PTF Predictions 39
References 41
Part II. Soil Hydraulic Properties: Water Retention and Hydraulic Conductivity

Chapter 4. Soil Texture and Particle-Size Distribution as Input to Estimate Soil Hydraulic Properties
A. Nemes and W.J. Rawls

1. Introduction
2. Particle-Size and Soil Texture Class Systems
3. Soil Texture Data in Pedotransfer Functions
3.1. The use of texture class information in pedotransfer functions
3.2. The use of particle-size distribution data in pedotransfer functions
3.3. Pedotransfer functions based solely on texture or particle-size distribution information
4. Interpolations to Fill in Missing Particle-Size Data
5. Evaluation of Different Representations of Particle-Size Distribution
5.1. Soil data
5.2. Methods
5.3. Results
6. Summary
References

Chapter 5. Simple Parametric Methods to Estimate Soil Water Retention and Hydraulic Conductivity
D.J. Timlin, R.D. Williams, L.R. Ahuja and G.C. Heathman

1. Introduction
2. Estimating Soil Water Contents and Soil Water Retention
2.1. A scaling method to estimate soil water retention curves
2.2. The One-Parameter Gregson–Hector–McGovan (GHM) Model
2.3. Air-entry potential and saturated water content and the GHM Model
2.4. The GHM One-Parameter Model with generalized parameters
2.4.1. Implementation of the GHM One-Parameter Model with generalized parameters
2.5. Use of available water capacity with the GHM One-Parameter Model
3. Hydraulic Conductivity
3.1. Determining saturated hydraulic conductivity, K_{sat}
3.1.1. Predicting saturated conductivity from effective porosity
3.2. Relationships for unsaturated hydraulic conductivity
3.2.1. Extending the One-Parameter Model to unsaturated hydraulic conductivity–matric potential relationships
4. Applications of Pedotransfer Functions for Simulation Models
5. Summary
References

Chapter 6. Effect of Soil Organic Carbon on Soil Hydraulic Properties
W.J. Rawls, A. Nemes and Ya. Pachepsky

1. Introduction
2. Bulk Density/Porosity
Chapter 9. Utilizing Mineralogical and Chemical Information in PTFs
A. Bruand

1. Mineralogical Composition of the Clay Fraction 153
2. Cation Exchange Capacity 154
3. Soil Chemical Properties 155
4. Concluding Remarks 156

References 157

Chapter 10. Preliminary Grouping of Soils
A. Bruand

1. Origin of the Variability and Grouping Strategy 159
2. Grouping Criteria 160
 2.1. Genetic grouping 160
 2.2. Horizon-based grouping 161
 2.3. Texture grouping 163
 2.4. Grouping based on structure and bulk density 165
 2.5. Parent material grouping 167
 2.6. Consecutive grouping 167
3. Grouping Decreases the Number of Predictors 167
4. Comparison of Groupings and Improvement of Prediction after Grouping 168
5. Conclusion 171

References 172

Part III. Hydrological and Physical Parameters

Chapter 11. Pedotransfer Functions for Soil Erosion Models
D. Flanagan

1. Introduction 177
2. History of Early U.S. Erosion Research 177
3. The Universal Soil Loss Equation 179
4. Parameterization of Erosion Prediction Models 180
 4.1. Erosion prediction models 180
 4.2. Sediment particle fractions and particle composition 181
 4.3. WEPP infiltration parameterization 183
 4.4. WEPP erodibility parameterization 185
5. Procedures to Develop Erosion Model Pedotransfer Functions 186
 5.1. Experimental techniques 187
 5.2. Interrill erodibility 188
 5.3. Rill erodibility and critical shear stress 188
 5.4. Effective hydraulic conductivity 189
6. Summary 190

References 191
Chapter 12. Solute Adsorption and Transport Parameters

B. Minasny and E. Perfect

1. Introduction 195
2. Solute Adsorption 196
3. Diffusive Solute Transport 201
4. Convective-Dispersive Solute Transport 204
 4.1. Convection dispersion equation (CDE) 204
 4.2. Mobile-immobile model (MIM) 207
 4.3. Other physico-empirical models 213
5. Upscaling Pedotransfer Function Predictions 213
6. Conclusions and Future Directions 216
References 217

Chapter 13. Estimating Soil Shrinkage Parameters

E. Braudeau, R.H. Mohtar and N. Chahinian

1. Importance of Shrink–Swell Properties 225
2. Soil–Water Medium Functional Model 225
 2.1. Soil–water medium hierarchy and functionality 225
 2.2. Characterization of the pedostructure using shrinkage curve 227
3. Seeking pedotransfer Functions for the SC using the Pedostructure Characterization 229
 3.1. The required parameters for crossing scales from laboratory to the field 230
 3.2. Significance of the SC parameters and its corresponding approximation 231
 3.3. Construction of the SC from primary data of soil 235
4. Application Example 235
 4.1. Pedotransfer functions for calculating FC and PWP (W_D and W_B) 235
 4.2. Values of LS_{mod} for the four types of soil 236
 4.3. Value of K_{bs} as a function of texture 237
 4.4. Equations used to build the shrinkage curve 237
5. Conclusion 238
Appendix A. List of Parameters and Abbreviations Used 238
References 239

Chapter 14. Key Soil Water Contents

E. Shein, A. Guber and A. Dembovetsky

1. Introduction 241
2. Materials and Methods 243
3. Estimating Soil Water Contents at Field Capacity 243
4. Selection of Key Water Contents to Estimate Van Genuchten’s Parameters 245
5. Concluding Remarks 248
References 248
Part IV. Spatial Component in PTF Development

Chapter 15. Data Availability and Scale in Hydrologic Applications
K. Smettem, G. Pracilio, Y. Oliver and R. Harper

1. Introduction 253
2. Describing One-Dimensional Flow 254
3. Some Issues in Extrapolating from Point-Based Soil Water Balance 255
 3.1. Background of a simple physico-empirical pedotransfer function 257
 3.2. Difficulties with estimation of the “air entry” point 260
 3.3. An intercomparison of three simple PTFs 260
 3.4. Estimating the hydraulic conductivity “matching point” in the Brooks–Corey $K(h)$ or $K(\theta)$ relation 263
4. Spatial Mapping of Clay Content Using Ancillary Data 264
 4.1. Gamma radiometric techniques 264
 4.2. High resolution airborne radiometric systems 265
5. Redundancy of soil textural classes and the interrelation with climate 267
6. Concluding remarks 267
References 268

Chapter 16. The Role of Terrain Analysis in Using and Developing Pedotransfer Functions
N. Romano and G.B. Chirico

1. Introduction 273
2. Terrain Analysis for Landscape Description 275
 2.1. Primary terrain attributes 279
 2.2. Secondary terrain attributes 280
3. Terrain Attributes as Auxiliary Data for Interpolating Soil Properties 280
4. Terrain Attributes as Input Parameters in PTFs 283
5. Concluding Remarks and Future Developments 288
References 290

Chapter 17. Spatial Structure of PTF Estimates
N. Romano

1. Background and Justification 295
2. Soil Hydraulic Property Variations and the Role of Simplified Predictive Methods 298
3. Case Study and Discussion 303
 3.1. Potential and limitations of using PTF estimates to capture the spatial structure of soil hydraulic parameters 304
 3.2. Assessment of soil hydraulic spatial variability using ANNs and terrain attributes 313
4. Concluding remarks with an eye on scale issues 315
References 317
Part V. User-Oriented Techniques and Software

Chapter 18. Soil Inference Systems
A.B. McBratney and B. Minasny

1. Software for Pedotransfer Functions 323
2. Soil Inference Systems 324
3. A Scheme for Defining Uncertainties of Data Inside/Outside the Training Set 327
4. Example of SINFER 328
5. General Discussion and Conclusions 344
 References 345

Chapter 19. Graphic User Interfaces for Pedotransfer Functions
M.G. Schaap

1. Soil Water Characteristics from Texture 349
2. SOILPAR 350
3. ROSETTA 351
4. NEUROPACK 353
 References 355

Chapter 20. Methods to Evaluate Pedotransfer Functions

1. Evaluation of Pedotransfer Functions
 M. Donatelli, H. Wöstén and G. Belocchi 357
 1.1. Evaluating uncertainty in equations and data sets 358
 1.2. Comparing estimates and measurements 358
 1.3. Pedotransfer as inputs for simulation models: sensitivity analysis 362
2. Integrated Indices for Pedotransfer Function Evaluation
 M. Donatelli, M. Acutis, A. Nemes and Wöstén 363
 2.1. Integrated indices to evaluate PTFs for soil water retention 363
 2.1.1. The “Accuracy” module 364
 2.1.2. The “Correlation” module 366
 2.1.3. The “Pattern” module 366
 2.1.4. Aggregation of modules 368
 2.1.5. The soil data set 369
 2.1.6. The pedotransfer functions evaluated 370
 2.2. Evaluating pedotransfer functions using the integrated indices 377
 2.2.1. The index I_{PTFSW} 377
 2.2.2. The index I_{PTFRC} 388
 2.2.3. Final remarks about integrated indices for pedotransfer function evaluation 388
3. Functional Evaluation of Pedotransfer Functions
 H. Wöstén, A. Nemes and M. Acutis 390
 3.1. Example of functional evaluation of PTF uncertainty 390
 3.2. Application of PTFs in a functional context 391
Appendix A: Numerical Indices and Test Statistics for Model Evaluation

G. Belocchi

A.1. List of abbreviations
A.2. Difference-based statistics
A.3. Correlation-based statistics

Appendix B: Fuzzy Expert Systems
G. Fila and G. Belocchi

References

Part VI. Pedotransfer Functions Developed for Different Regions of the World

Chapter 21. Pedotransfer Functions for Tropical Soils
J. Tomasella and M. Hodnett

1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions

Chapter 22. Pedotransfer Functions for Europe
J.H.M. Wöstien and A. Nemes

References

Chapter 23. Pedotransfer Functions for the United States
W.J. Rawls

1. Introduction
2. Soil Water Retention
 2.1. Pedotransfer functions for specific water potentials on the soil water retention curve
 2.2. Estimation of soil water retention model parameters
3. Saturated Hydraulic Conductivity

References

Chapter 24. Pedotransfer Studies in Poland
R. Walczak, B. Witkowska-Walczak and C. Sławiński

1. Water Retention
 1.1. Importance of various soil solid phase parameters
 1.2. Pedotransfer functions for mineral soils
 1.3. Comparison of selected pedotransfer function models
 1.4. Approach to pedotransfer functions for organic soils

References