The Classification of Quasithin Groups

II. Main Theorems: The Classification of Simple QTKE-groups

Michael Aschbacher
Stephen D. Smith
Contents of Volumes I and II

Preface xiii

Volume I: Structure of strongly quasithin κ-groups 1

Introduction to Volume I 3
 0.1. Statement of Main Results 3
 0.2. An overview of Volume I 5
 0.3. Basic results on finite groups 7
 0.4. Semisimple quasithin and strongly quasithin κ-groups 7
 0.5. The structure of SQTK-groups 7
 0.6. Thompson factorization and related notions 8
 0.7. Minimal parabolics 10
 0.8. Pushing up 10
 0.9. Weak closure 11
 0.10. The amalgam method 11
 0.11. Properties of κ-groups 12
 0.12. Recognition theorems 13
 0.13. Background References 15

Chapter A. Elementary group theory and the known quasithin groups 19
 A.1. Some standard elementary results 19
 A.2. The list of quasithin κ-groups: Theorems A, B, and C 32
 A.3. A structure theory for Strongly Quasithin κ-groups 41
 A.4. Signalizers for groups with $X = O^2(X)$ 56
 A.5. An ordering on $\mathcal{M}(T)$ 61
 A.6. A group-order estimate 64

Chapter B. Basic results related to Failure of Factorization 67
 B.1. Representations and FF-modules 67
 B.2. Basic Failure of Factorization 74
 B.3. The permutation module for A_n and its FF*-offenders 83
 B.4. F_2-representations with small values of q or q 85
 B.5. FF-modules for SQTK-groups 98
 B.6. Minimal parabolics 112
 B.7. Chapter appendix: Some details from the literature 118

Chapter C. Pushing-up in SQTK-groups 121
 C.1. Blocks and the most basic results on pushing-up 121
 C.2. More general pushing up in SQTK-groups 143
 C.3. Pushing up in nonconstrained 2locals 148
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.4.</td>
<td>Pushing up in constrained 2-locals</td>
<td>151</td>
</tr>
<tr>
<td>C.5.</td>
<td>Finding a common normal subgroup</td>
<td>154</td>
</tr>
<tr>
<td>C.6.</td>
<td>Some further pushing up theorems</td>
<td>164</td>
</tr>
<tr>
<td>Chapter D</td>
<td>The qrc-lemma and modules with $\hat{q} \leq 2$</td>
<td>171</td>
</tr>
<tr>
<td>D.1.</td>
<td>Stellmacher’s qrc-Lemma</td>
<td>171</td>
</tr>
<tr>
<td>D.2.</td>
<td>Properties of q and \hat{q}: $\mathcal{R}(G, V)$ and $Q(G, V)$</td>
<td>177</td>
</tr>
<tr>
<td>D.3.</td>
<td>Modules with $\hat{q} \leq 2$</td>
<td>192</td>
</tr>
<tr>
<td>Chapter E</td>
<td>Generation and weak closure</td>
<td>209</td>
</tr>
<tr>
<td>E.1.</td>
<td>\mathcal{E}-generation and the parameter $n(G)$</td>
<td>209</td>
</tr>
<tr>
<td>E.2.</td>
<td>Minimal parabolics under the SFTK-hypothesis</td>
<td>215</td>
</tr>
<tr>
<td>E.3.</td>
<td>Weak Closure</td>
<td>230</td>
</tr>
<tr>
<td>E.4.</td>
<td>Values of a for F_2-representations of SFTK-groups</td>
<td>240</td>
</tr>
<tr>
<td>E.5.</td>
<td>Weak closure and higher Thompson subgroups</td>
<td>242</td>
</tr>
<tr>
<td>E.6.</td>
<td>Lower bounds on $r(G, V)$</td>
<td>244</td>
</tr>
<tr>
<td>Chapter F</td>
<td>Weak BN-pairs and amalgams</td>
<td>259</td>
</tr>
<tr>
<td>F.1.</td>
<td>Weak BN-pairs of rank 2</td>
<td>259</td>
</tr>
<tr>
<td>F.2.</td>
<td>Amalgams, equivalences, and automorphisms</td>
<td>264</td>
</tr>
<tr>
<td>F.3.</td>
<td>Paths in rank-2 amalgams</td>
<td>269</td>
</tr>
<tr>
<td>F.4.</td>
<td>Controlling completions of Lie amalgams</td>
<td>273</td>
</tr>
<tr>
<td>F.5.</td>
<td>Identifying $L_4(3)$ via its $U_4(2)$-amalgam</td>
<td>299</td>
</tr>
<tr>
<td>F.6.</td>
<td>Goldschmidt triples</td>
<td>304</td>
</tr>
<tr>
<td>F.7.</td>
<td>Coset geometries and amalgam methodology</td>
<td>310</td>
</tr>
<tr>
<td>F.8.</td>
<td>Coset geometries with $b > 2$</td>
<td>315</td>
</tr>
<tr>
<td>F.9.</td>
<td>Coset geometries with $b > 2$ and $m(V_1) = 1$</td>
<td>317</td>
</tr>
<tr>
<td>Chapter G</td>
<td>Various representation-theoretic lemmas</td>
<td>327</td>
</tr>
<tr>
<td>G.1.</td>
<td>Characterizing direct sums of natural $SL_n(F_2^n)$-modules</td>
<td>327</td>
</tr>
<tr>
<td>G.2.</td>
<td>Almost-special groups</td>
<td>332</td>
</tr>
<tr>
<td>G.3.</td>
<td>Some groups generated by transvections</td>
<td>337</td>
</tr>
<tr>
<td>G.4.</td>
<td>Some subgroups of $Sp_4(2^n)$</td>
<td>338</td>
</tr>
<tr>
<td>G.5.</td>
<td>F_2-modules for A_6</td>
<td>342</td>
</tr>
<tr>
<td>G.6.</td>
<td>Modules with $m(G, V) \leq 2$</td>
<td>345</td>
</tr>
<tr>
<td>G.7.</td>
<td>Small-degree representations for some SFTK-groups</td>
<td>346</td>
</tr>
<tr>
<td>G.8.</td>
<td>An extension of Thompson’s dihedral lemma</td>
<td>349</td>
</tr>
<tr>
<td>G.9.</td>
<td>Small-degree representations for more general SFTK-groups</td>
<td>351</td>
</tr>
<tr>
<td>G.10.</td>
<td>Small-degree representations on extraspecial groups</td>
<td>357</td>
</tr>
<tr>
<td>G.11.</td>
<td>Representations on extraspecial groups for SFTK-groups</td>
<td>364</td>
</tr>
<tr>
<td>G.12.</td>
<td>Subgroups of $Sp(V)$ containing transvections on hyperplanes</td>
<td>370</td>
</tr>
<tr>
<td>Chapter H</td>
<td>Parameters for some modules</td>
<td>377</td>
</tr>
<tr>
<td>H.1.</td>
<td>$U_4(2^n)$ on an orthogonal module of dimension $4n$ ($n > 1$)</td>
<td>378</td>
</tr>
<tr>
<td>H.2.</td>
<td>$SU_3(2^n)$ on a natural $6n$-dimensional module</td>
<td>378</td>
</tr>
<tr>
<td>H.3.</td>
<td>$Sz(2^n)$ on a natural $4n$-dimensional module</td>
<td>379</td>
</tr>
<tr>
<td>H.4.</td>
<td>$(S)L_3(2^n)$ on modules of dimension 6 and 9</td>
<td>379</td>
</tr>
<tr>
<td>H.5.</td>
<td>7-dimensional permutation modules for $L_9(2)$</td>
<td>385</td>
</tr>
<tr>
<td>H.6.</td>
<td>The 21-dimensional permutation module for $L_7(2)$</td>
<td>386</td>
</tr>
<tr>
<td>H.7.</td>
<td>$Sp_4(2^n)$ on natural $4n$ plus the conjugate $4n^*$</td>
<td>388</td>
</tr>
</tbody>
</table>
H.8. A_7 on $\mathbb{A} \oplus \overline{\mathbb{A}}$ 389
H.9. $\text{Aut}(L_n(2))$ on the natural \mathfrak{n} plus the dual \mathfrak{n}^* 389
H.10. A foreword on Mathieu groups 392
H.11. M_{12} on its 10-dimensional module 392
H.12. $3M_{22}$ on its 12-dimensional modules 393
H.13. Preliminaries on the binary code and cocode modules 395
H.14. Some stabilizers in Mathieu groups 396
H.15. The cocode modules for the Mathieu groups 398
H.16. The code modules for the Mathieu groups 402

Chapter I. Statements of some quoted results 407
I.1. Elementary results on cohomology 407
I.2. Results on structure of nonsplit extensions 409
I.3. Balance and 2-components 414
I.4. Recognition Theorems 415
I.5. Characterizations of $L_4(2)$ and $Sp_6(2)$ 418
I.6. Some results on TI-sets 424
I.7. Tightly embedded subgroups 425
I.8. Discussion of certain results from the Bibliography 428

Chapter J. A characterization of the Rudvalis group 431
J.1. Groups of type Ru 431
J.2. Basic properties of groups of type Ru 432
J.3. The order of a group of type Ru 438
J.4. A $2F_4(2)$-subgroup 440
J.5. Identifying G as Ru 445

Chapter K. Modules for SQTK-groups with $q(G,V) \leq 2$. 451
Notation and overview of the approach 451
K.1. Alternating groups 452
K.2. Groups of Lie type and odd characteristic 453
K.3. Groups of Lie type and characteristic 2 453
K.4. Sporadic groups 457

Bibliography and Index 461

Background References Quoted
(Part 1: also used by GLS) 463

Background References Quoted
(Part 2: used by us but not by GLS) 465

Expository References Mentioned 467

Index 471

Volume II: Main Theorems; the classification of simple QTKE-groups 479

Introduction to Volume II 481
0.1. Statement of Main Results 481
0.2. Context and History 483
0.3. An Outline of the Proof of the Main Theorem 487
0.4. An Outline of the Proof of the Even Type Theorem 495

Part 1. Structure of QTKE-Groups and the Main Case Division 497

Chapter 1. Structure and intersection properties of 2locals 499
1.1. The collection \mathcal{H}^c 499
1.2. The set $\mathcal{L}^*(G, T)$ of nonsolvable uniqueness subgroups 503
1.3. The set $\Xi^*(G, T)$ of solvable uniqueness subgroups of G 508
1.4. Properties of some uniqueness subgroups 514

Chapter 2. Classifying the groups with $|\mathcal{M}(T)| = 1$ 517
2.1. Statement of main result 518
2.2. Bender groups 518
2.3. Preliminary analysis of the set Γ_0 521
2.4. The case where Γ_0^c is nonempty 527
2.5. Eliminating the shadows with Γ_0 empty 550

Chapter 3. Determining the cases for $L \in \mathcal{L}^*_f(G, T)$ 571
3.1. Common normal subgroups, and the qrc-lemma for QTKE-groups 571
3.2. The Fundamental Setup, and the case division for $\mathcal{L}^*_f(G, T)$ 578
3.3. Normalizers of uniqueness groups contain $N_G(T)$ 585

Chapter 4. Pushing up in QTKE-groups 605
4.1. Some general machinery for pushing up 605
4.2. Pushing up in the Fundamental Setup 608
4.3. Pushing up $L_2(2^n)$ 613
4.4. Controlling suitable odd locals 619

Part 2. The treatment of the Generic Case 627

Chapter 5. The Generic Case: $L_2(2^n)$ in \mathcal{L}_f and $n(H) > 1$ 629
5.1. Preliminary analysis of the $L_2(2^n)$ case 630
5.2. Using weak BN-pairs and the Green Book 646
5.3. Identifying rank 2 Lie-type groups 658

Chapter 6. Reducing $L_2(2^n)$ to $n = 2$ and V orthogonal 663
6.1. Reducing $L_2(2^n)$ to $L_2(4)$ 663
6.2. Identifying M_{22} via $2/2(4)$ on the natural module 679

Part 3. Modules which are not FF-modules 693

Chapter 7. Eliminating cases corresponding to no shadow 695
7.1. The cases which must be treated in this part 696
7.2. Parameters for the representations 697
7.3. Bounds on w 698
7.4. Improved lower bounds for r 699
7.5. Eliminating most cases other than shadows 700
7.6. Final elimination of $L_3(2)$ on $3 \oplus \overline{3}$ 701
7.7. mini-Appendix: $r > 2$ for $L_3(2).2$ on $3 \oplus \overline{3}$ 703
CONTENTS OF VOLUMES I AND II

Chapter 8. Eliminating shadows and characterizing the J_4 example 711
 8.1. Eliminating shadows of the Fischer groups 711
 8.2. Determining local subgroups, and identifying J_4 714
 8.3. Eliminating $L_3(2) \wr 2$ on 9 723

Chapter 9. Eliminating $\Omega_4^+(2^n)$ on its orthogonal module 729
 9.1. Preliminaries 729
 9.2. Reducing to $n = 2$ 730
 9.3. Reducing to $n(H) = 1$ 732
 9.4. Eliminating $n(H) = 1$ 735

Part 4. Pairs in the FSU over F_{2^n} for $n > 1$. 739

Chapter 10. The case $L \in \mathcal{L}_f^*(G, T)$ not normal in M. 741
 10.1. Preliminaries 741
 10.2. Weak closure parameters and control of centralizers 742
 10.3. The final contradiction 755

Chapter 11. Elimination of $L_3(2^n)$, $Sp_4(2^n)$, and $G_2(2^n)$ for $n > 1$ 759
 11.1. The subgroups $N_G(V_1)$ for T-invariant subspaces V_1 of V 760
 11.2. Weak-closure parameter values, and $\langle V_{N_G(V_1)} \rangle$ 766
 11.3. Eliminating the shadow of $L_4(q)$ 770
 11.4. Eliminating the remaining shadows 775
 11.5. The final contradiction 778

Part 5. Groups over F_2 785

Chapter 12. Larger groups over F_2 in $\mathcal{L}_f^*(G, T)$ 787
 12.1. A preliminary case: Eliminating $L_n(2)$ on $n \oplus n^*$ 787
 12.2. Groups over F_2, and the case V a TI-set in G 794
 12.3. Eliminating A_7 807
 12.4. Some further reductions 812
 12.5. Eliminating $L_5(2)$ on the 10-dimensional module 816
 12.6. Eliminating A_8 on the permutation module 822
 12.7. The treatment of A_6 on a 6-dimensional module 838
 12.8. General techniques for $L_n(2)$ on the natural module 849
 12.9. The final treatment of $L_n(2)$, $n = 4, 5$, on the natural module 857

Chapter 13. Mid-size groups over F_2 865
 13.1. Eliminating $L \in \mathcal{L}_f^*(G, T)$ with $L/O_2(L)$ not quasisimple 865
 13.2. Some preliminary results on A_5 and A_6 876
 13.3. Starting mid-sized groups over F_2, and eliminating $U_3(3)$ 884
 13.4. The treatment of the 5-dimensional module for A_6 896
 13.5. The treatment of A_5 and A_6 when $\langle V_3^{G_1} \rangle$ is nonabelian 915
 13.6. Finishing the treatment of A_5 926
 13.7. Finishing the treatment of A_6 when $\langle V_3^{G_1} \rangle$ is nonabelian 935
 13.8. Finishing the treatment of A_6 946
 13.9. Chapter appendix: Eliminating the A_{10}-configuration 969

Chapter 14. $L_3(2)$ in the FSU, and $L_2(2)$ when $\mathcal{L}_f(G, T)$ is empty 975
CONTENTS

14.1. Preliminary results for the case $\mathcal{L}_f(G, T)$ empty 975
14.2. Starting the $L_2(2)$ case of \mathcal{L}_f empty 981
14.3. First steps; reducing $\langle V^{G_1}\rangle$ nonabelian to extraspecial 989
14.4. Finishing the treatment of $\langle V^{G_1}\rangle$ nonabelian 1005
14.5. Starting the case $\langle V^{G_1}\rangle$ abelian for $L_3(2)$ and $L_2(2)$ 1013
14.6. Eliminating $L_2(2)$ when $\langle V^{G_1}\rangle$ is abelian 1020
14.7. Finishing $L_3(2)$ with $\langle V^{G_1}\rangle$ abelian 1042
14.8. The QTKE-groups with $\mathcal{L}_f(G, T) \neq \emptyset$ 1078

Part 6. The case $\mathcal{L}_f(G, T)$ empty

Chapter 15. The case $\mathcal{L}_f(G, T) = \emptyset$
15.1. Initial reductions when $\mathcal{L}_f(G, T)$ is empty 1083
15.2. Finishing the reduction to $M_f/C_{M_f}(V(M_f)) \simeq O_4^+(2)$ 1104
15.3. The elimination of $M_f/C_{M_f}(V(M_f)) = S_3 \wr Z_2$ 1120
15.4. Completing the proof of the Main Theorem 1155

Part 7. The Even Type Theorem

Chapter 16. Quasithin groups of even type but not even characteristic 1167
16.1. Even type groups, and components in centralizers 1169
16.2. Normality and other properties of components 1173
16.3. Showing L is standard in G 1177
16.4. Intersections of $N_G(L)$ with conjugates of $C_G(L)$ 1182
16.5. Identifying J_1, and obtaining the final contradiction 1194

Bibliography and Index

Background References Quoted
(Part 1: also used by GLS) 1207

Background References Quoted
(Part 2: used by us but not by GLS) 1209

Expository References Mentioned 1211

Index 1215