CLUSTERS OF GALAXIES
Probes of Cosmological Structure and Galaxy Evolution

Edited by
JOHN S. MULCHAEGY
ALAN DRESSLER
and
AUGUSTUS OEMLER
Contents

Introduction xi
List of Participants xiii

1 Galaxy clusters as probes of cosmology and astrophysics
 August E. Evrard 1
 1.1 Introduction 1
 1.2 Clusters as Dark Matter Potential Wells 4
 1.3 Connecting Mass to Observables: Virial Scaling Relations 11
 1.4 The Dark Matter Virial Relation 15
 1.5 Interpreting n(T): An Example of Cosmological-Astrophysical Confusion 18
 1.6 Discussion 20
 References 21

2 Clusters of galaxies in the Sloan Digital Sky Survey
 Robert C. Nichol 24
 2.1 Introduction 24
 2.2 SDSS Cluster Catalogs 25
 2.3 The C4 Algorithm 26
 2.4 Luminous Red Galaxies 32
 2.5 Galaxy Properties as a Function of Environment 34
 2.6 Strangulation of Star Formation 37
 References 40

3 Clustering studies with the 2dF Galaxy Redshift Survey
 Warrick J. Couch, Matthew M. Colless, and Roberto De Propris 42
 3.1 Introduction 42
 3.2 Galaxy Clustering: Key Results 43
 3.3 Cluster Luminosity Functions 45
 3.4 Star Formation Versus Environment 50
 References 57

4 X-ray surveys of low-redshift clusters
 Alastair C. Edge 58
 4.1 Introduction 58
Contents

4.2 An Historical Perspective 60
4.3 X-ray Imaging Begins with Einstein 61
4.4 The X-ray Dark Ages 61
4.5 The Middle Age of X-ray Astronomy? 65
4.6 Can “Edge’s Law” Hold? 68
4.7 Conclusions .. 69
4.8 A Coda ... 69
References ... 69

5 X-ray clusters at high redshift

Piero Rosati .. 72
5.1 Introduction .. 72
5.2 Evolution of the Cluster Abundance 73
5.3 Cosmology with X-ray Clusters 76
5.4 Distant X-ray Clusters: the Latest View from Chandra 80
5.5 Galaxy Populations in the Most Distant Clusters 82
5.6 Conclusions and Future Challenges 84
References ... 86

6 The red sequence technique and high-redshift galaxy clusters

Michael D. Gladders ... 89
6.1 Cluster Surveys ... 89
6.2 The CRS Method in Detail 91
6.3 The Red Sequence and Cluster Confirmation 94
6.4 The Red Sequence Cluster Survey 95
6.5 Summary and Future Directions 103
References ... 106

7 Probing dark matter in clusters

Ian Smail ... 108
7.1 Introduction ... 108
7.2 Lensing Methods .. 109
7.3 Comparing X-ray and Lensing Masses 114
7.4 Cluster Mass Profiles 117
7.5 Relating Galaxy Properties to their Dark Matter Environment 119
7.6 Summary ... 120
References ... 121

8 Clusters of galaxies: an X-ray perspective

Richard F. Mushotzky 123
8.1 Introduction ... 124
8.2 Temperature Structure of Clusters 126
8.3 Luminosity-Temperature Relation for Clusters 128
8.4 Optical Light, Velocity Dispersion, and X-ray Properties 129
8.5 Surface Brightness Profiles 131
8.6 Mass of Baryons and Metals and How They Are Partitioned 132
Contents

8.7 Mass Scaling Laws 133
8.8 Form of the Potential 133
8.9 Merges, Structures, etc. 134
8.10 Abundances 135
8.11 Conclusion 139

References 140

9 Cool gas in clusters of galaxies

Megan Donahue and G. Mark Voit

9.1 A Census of Cool Gas 143
9.2 The Cooling Flow Hypothesis 145
9.3 The Trouble with Cooling Flows 146
9.4 The Galaxy-Cluster Connection 150
9.5 The Revival of Conduction 155
9.6 Paths to a Resolution 156

References 157

10 Using the Sunyaev-Zel’’dovich effect to probe the gas in clusters

Mark Birkinshaw

10.1 Introduction 161
10.2 The Physics of the Sunyaev-Zel’’dovich Effect 162
10.3 Uses of the Sunyaev-Zel’’dovich Effect in Cluster Studies 165
10.4 Instruments and Techniques 170
10.5 Summary 175

References 175

11 The formation of early-type galaxies: observations to $z \approx 1$

Tommaso Treu

11.1 Introduction 177
11.2 Evolution of the Number Density 179
11.3 Star Formation History 185
11.4 The Mass Density Profile of Distant E+S0 Galaxies 188

References 192

12 Evolution of early-type galaxies in clusters

Marijn Franx

12.1 A Working Definition 196
12.2 Homogeneity at Low Redshift 197
12.3 Evolution to $z = 1$ 198
12.4 Complex Models of Galaxy Evolution 200
12.5 Comparison of Field and Cluster Early-type Galaxies 200
12.6 Redshifts $\gg 1$ 202
12.7 Conclusion 204

References 204
Contents

17.4 Galaxy Evolution: Mergers, Elliptical, and S0 Galaxies 286
17.5 Tidal Stripping and Intracluster Light 288

References 293

18 Evolutionary processes in clusters

Ben Moore

18.1 Introduction 295
18.2 The Paradigms for Disk and Spheroid Formation 296
18.3 Mechanisms for Transformation 297
18.4 A New Paradigm for the Formation of S0/dS0/dE/dSph/UCD Galaxies 299
18.5 Conclusions 303

References 303

19 Interaction of galaxies with the intracluster medium

Jacqueline H. van Gorkom

19.1 Introduction 305
19.2 The Statistics of H I Deficiency 307
19.3 Simulations 309
19.4 Comparison of Simulations with H I Imaging 310
19.5 Surveys and the Importance of Interactions with the ICM 317
19.6 Concluding Remarks 320

References 322

20 The difference between clusters and groups: a journey from cluster cores to their outskirts and beyond

Richard G. Bower and Michael L. Balogh

20.1 Introduction 325
20.2 Clusters of Galaxies 326
20.3 The Other Axis: Density 329
20.4 What Does It All Mean? 334

References 339

21 Galaxy groups at intermediate redshift and the mechanisms of galaxy evolution

Ray G. Carlberg

21.1 Introduction 343
21.2 Properties of the CNOC2 Groups 344
21.3 Group Galaxy Evolution 346
21.4 Radial Color Gradients of Groups 347
21.5 Merging and the Inward Flow of Group Galaxies 348
21.6 Consequences of Galaxy Evolution in Groups 351

21.7 Conclusions 351

References 351

22 The intragroup medium

John S. Mulchaey

353
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1 Introduction</td>
<td>353</td>
</tr>
<tr>
<td>22.2 ROSAT Studies</td>
<td>354</td>
</tr>
<tr>
<td>22.3 Spatial Properties of the Intragroup Medium</td>
<td>355</td>
</tr>
<tr>
<td>22.4 Spectral Properties of the Intragroup Medium</td>
<td>359</td>
</tr>
<tr>
<td>22.5 Mass and Baryon Fraction Estimates</td>
<td>362</td>
</tr>
<tr>
<td>22.6 Evidence for “Additional” Physics</td>
<td>363</td>
</tr>
<tr>
<td>22.7 The Intragroup Medium in The Local Group</td>
<td>366</td>
</tr>
<tr>
<td>22.8 Concluding Remarks</td>
<td>367</td>
</tr>
<tr>
<td>References</td>
<td>367</td>
</tr>
</tbody>
</table>

23 Symposium summary

Jeremiah P. Ostriker

23.1 Introduction 371
23.2 Important Results Addressed by Speakers 371
23.3 EROs 372
23.4 Observations, Phenomenology, and Data Interpretation 374
23.5 Methodology and Technology 375
23.6 Important Results Based on Clusters Not Addressed 376
23.7 Discussion 376
References 376

Credits