A First Course in Scientific Computing
Symbolic, Graphic, and Numeric Modeling Using Maple, Java, Mathematica, and Fortran90

RUBIN H. LANDAU

Contributors:
Robyn Wangberg (Mathematica), Kyle Augustson (Fortran90), M. J. Páez, C. C. Bordeianu, C. Barnes

PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD
3.9 Functions
3.10 User-Defined Functions
3.11 Reexpressing Answers
3.12 CS: Overflow, Underflow, and Round-Off Error
3.13 Solution: Viewing Rocket Golf
3.14 Extension: Tachyons*
3.15 Key Words and Concepts
3.16 Supplementary Exercises

Chapter 4. Visualizing Data, Abstract Types; Electric Fields

4.1 Why Visualization?
4.2 Problem: Stable Points in Electric Fields
4.3 Theory: Stability Criteria and Potential Energy
4.4 Basic 2-D Plots: plot
4.5 Compound (Abstract) Data Types: [Lists] and {Sets}
4.6 3-D (Surface) Plots of Analytic Functions
4.7 Solution: Dipole and Quadrupole Fields
4.8 Exploration: The Tripole
4.9 Extension: Yet More Plot Types*
4.10 Visualizing Numerical Data
4.11 Plotting a Matrix: matrixplot*
4.12 Animations of Data*
4.13 Key Words and Concepts
4.14 Supplementary Exercises

Chapter 5. Solving Equations, Differentiation; Towers

5.1 Problem: Maximum Height of a Tower
5.2 Model: Block Stacking
5.3 Math: Equations as Challenges
5.4 Solving a Single Equation: solve, fsolve
5.5 Solving Simultaneous Equations (Sets)
5.6 Solution to Tower Problem
5.7 Differentiation: limit, diff, D
5.8 Numerical Derivatives*
5.9 Alternate Solution: Maximum Tower Height
5.10 Assessment and Exploration
5.11 Auxiliary Problem: Nonlinear Oscillations
5.12 Key Words and Concepts
5.13 Supplementary Exercises

Chapter 6. Integration; Power and Energy Usage (Also 14)

6.1 Problem: Relating Power and Energy Usage
6.2 Empirical Models
6.3 Theory: Power and Energy Definitions
CONTENTS

6.4 Maple: Tools for Integration 136
6.5 Problem Solution: Energy from Power 139
6.6 Key Words and Concepts 143
6.7 Supplementary Exercises 144

Chapter 7. Matrices and Vectors; Rotation 145
7.1 Problem: Rigid-Body Rotation 145
7.2 Math: Vectors and Matrices 147
7.3 Theory: Angular Momentum Dynamics 149
7.4 Maple: Linear Algebra Tools 151
7.5 Matrix Arithmetic and Operations 157
7.6 Solution: Rotating Rigid Bodies 171
7.7 Exploration: Principal Axes of Rotation* 176
7.8 Key Words and Concepts 181
7.9 Supplementary Exercises 182

Chapter 8. Searching, Programming; Dipsticks 184
8.1 Problem: Volume of Liquid in Spherical Tanks 184
8.2 Math: Volume Integration 184
8.3 Algorithm: Bisection Searches 185
8.4 Programming in Maple 187
8.5 Solution: Volume from Dipstick Height 194
8.6 Key Words and Concepts 195
8.7 Supplementary Exercises 196

PART 2. JAVA (OR FORTRAN90) BY DOING 197

Chapter 9. Getting Started with Java 199
9.1 Compiled Languages 199
9.2 Java Program Pieces 201
9.3 Entering and Running Your First Program 202
9.4 Looking Inside Area.java 205
9.5 Key Words 207
9.6 Supplementary Exercises 207

Chapter 10. Data Types, Limits, Methods; Rocket Golf 208
10.1 Problem and Theory (Same as Chapter 3) 208
10.2 Java's Primitive Data Types 208
10.3 Methods (Functions) and Modular Programming 215
10.4 Solution: Viewing Rocket Golf 219
10.5 Your Problem: Modify Golf.java 223
10.6 Coercion and Overloading* 224
10.7 Key Words 229
Chapter 11. Visualization with Java, Classes, Packages

11.1 2-D Graphs within Java: PtPlot
11.2 Installing PtPlot: See Appendix C*
11.3 Classes and Packages*
11.4 Gnuplot Basics
11.5 Java Archives: jar*

Chapter 12. Flow Control via Logic; Projectiles

12.1 Problem: Frictionless Projectile Motion
12.2 Theory: Kinematics
12.3 Computer Science: Designing Structured Programs
12.4 Flow Control via Logic
12.5 Implementation: Projectile.java
12.6 Solution: Projectile Trajectories
12.7 Key Words
12.8 Supplementary Exercises

Chapter 13. Java Input and Output*

13.1 Basic Input with Scanner
13.2 Streams: Standard Output, Input, and Error
13.3 I/O Exceptions: FileCatchThrow.java
13.4 Automatic Code Documentation: javadoc
13.5 Nonstandard Formatted Output: printf

Chapter 14. Numerical Integration; Power and Energy Usage

14.1 Problem (Same as Chapter 6): Power and Energy
14.2 Algorithms: Trapezoid and Simpson's Rules
14.3 Assessment: Which Rule Is Better?
14.4 Key Words and Concepts
14.5 Supplementary Exercises

Chapter 15. Differential Equations with Java and Maple*

15.1 Problem: Projectile Motion with Drag
15.2 Model: Velocity-Dependent Drag
15.3 Algorithm: Numerical Differentiation
15.4 Math: Solving Differential Equations
15.5 Assessment: Balls Falling Out of the Sky?
15.6 Maple: Differential-Equation Tools
15.7 Maple Solution: Drag \propto Velocity
15.8 Extract Operands
15.9 Drag $\propto v^2$ (Exercise)
15.10 Drag $\propto v^{3/2}$
CONTENTS

15.11 Exploration: Planetary Motion* 310
15.12 Key Words 311
15.13 Supplementary Exercises 311

Chapter 16. Object-Oriented Programming; Complex Currents 313

16.1 Problem: Resonance in RLC Circuit 313
16.2 Math: Complex Numbers 313
16.3 Theory: Resistance Becomes Impedance 317
16.4 CS: Abstract Data Types, Objects 319
16.5 Java Solution: Complex Currents 329
16.6 Maple Solution: Complex Currents 330
16.7 Explorations: OOP Worked Examples* 334
16.8 Key Words 340
16.9 Java and Maple Exercises 340

Chapter 17. Arrays: Vectors, Matrices; Rigid-Body Rotations 341

17.1 Problem: Rigid-Body Rotations 341
17.2 Theory: Angular-Momentum Dynamics 343
17.3 CS, Math: Arrays, Vectors, and Matrices 344
17.4 Implementation: Inertia.java, Inertia3D.java 347
17.5 Jama: Java Matrix Library* 349
17.6 Key Words 353
17.7 Supplementary Exercises 353

Chapter 18. Advanced Objects; Baton Projectiles* 355

18.1 Problem: Trajectory of Thrown Baton 355
18.2 Theory: Combined Translation and Rotation 356
18.3 CS: OOP Design Concepts 359
18.4 Key Words 377
18.5 Supplementary Exercises 377

Chapter 19. Discrete Math, Arrays as Bins; Bug Dynamics* 378

19.1 Problem: Variability of Bug Populations 378
19.2 Theory: Self-Limiting Growth, Discrete Maps 378
19.3 Assessment: Properties of Nonlinear Maps 380
19.4 Exploration: Bifurcation Diagram, BugSort.java* 381
19.5 Exploration: Other Discrete Maps* 384

Chapter 20. 2-D Arrays: File I/O, PDEs; Realistic Capacitor 385

20.1 Problem: Field of Realistic Capacitor 385
20.2 Theory and Model: Electrostatics and PDEs 385
20.3 Algorithm: Finite Differences 387
20.4 Implementation: Laplace.java 389
20.5 Exploration: 2-D Capacitor 391
20.6 Exploration: 3-D Capacitor*
20.7 Key Words

21.1 What Is Web Computing?
21.2 Implementation: Get This to Work First
21.3 Exploration: Modify Applet1.java
21.4 Extension: PtPlot as Applet*
21.5 Extension: Applet with Button Input*
21.6 Extension: AWT, JFC, and Swing*
21.7 Example: Baton Applet, Jparabola.java*
21.8 Key Words
21.9 Supplementary Exercises

PART 3. \LaTeX{} SURVIVAL GUIDE

Chapter 22. \LaTeX{} for Text

22.1 Why \LaTeX{}?
22.2 Structure of a \LaTeX{} Document
22.3 Sample Input File (Sample.tex)
22.4 Sample \LaTeX{} Output
22.5 Fonts for Text
22.6 Environments
22.7 Lists
22.8 Sections

Chapter 23. \LaTeX{} for Mathematics

23.1 Entering Mathematics: Math Mode
23.2 Mathematical Symbols and Greek
23.3 Math Accents
23.4 Superscripts and Subscripts
23.5 Calculus and Sums
23.6 Changing Math Fonts
23.7 Math Functions
23.8 Fractions
23.9 Roots
23.10 Brackets (Delimiters)
23.11 Multiline Equations
23.12 Matrices and Math Arrays
23.13 Including Graphics
23.14 Exercise: Putting It All Together

Appendix A. Glossary
CONTENTS

Appendix B. Maple Quick Reference, Debugging Help 450

Appendix C. Java Quick Reference and Installing Software 461
 C.1 Java Elements 461
 C.2 Transferring Files from the CD 465
 C.3 Using our Maple Worksheets 466
 C.4 Using our Java Programs 466
 C.5 Installing PtPlot (or Other) Packages 467
 C.6 Installing Java Developer’s Kit 469

Bibliography 471

Index 477