CONTROL OF HOMOClinIC CHAOS BY WEAK PERIODIC PERTURBATIONS

Ricardo Chacón
University of Extremadura, Spain
CONTENTS

Preface vii

1 Introduction 1
 1.1 Control of chaotic dynamical systems ... 1
 1.2 Non-feedback control methods .. 2
 1.3 Controlling chaos by weak periodic excitations 3
 1.3.1 Robustness and flexibility .. 3
 1.3.2 Applicability and scope .. 4
 1.4 Harmonic versus non-harmonic excitations: the waveform effect 4
 1.4.1 Reshaping-induced strange non-chaotic attractors 6
 1.4.2 Reshaping-induced crisis phenomena 14
 1.4.3 Reshaping-induced basin boundary fractality 15
 1.4.4 Reshaping-induced escape from a potential well 16
 1.4.5 Reshaping-induced control of directed transport 20
 1.4.6 Reshaping-induced control of synchronization of coupled limit-
 cycle oscillators .. 26
 1.5 Notes and references .. 27

2 Theoretical Approach 31
 2.1 Dissipative systems versus Hamiltonian systems 31
 2.2 Stability of perturbed limit cycles .. 32
 2.3 Non-autonomous second-order differential systems 34
 2.4 Basics of Melnikov's method ... 34
 2.4.1 Illustration: A damped driven pendulum 38
 2.5 The generic Melnikov function: Deterministic case 40
 2.5.1 Suppression of chaos ... 40
 2.5.2 Enhancement of chaos ... 56
 2.5.3 Case of non-subharmonic resonances 60
 2.5.4 The special case of the main resonance 68
 2.6 The generic Melnikov function: The noise effect 80
 2.6.1 Additive noise .. 81
 2.6.2 Multiplicative noise ... 84
 2.7 Notes and references .. 85
3 Physical Mechanisms

3.1 Energy-based approach

3.1.1 Motivation

3.1.2 Geometrical resonance

3.1.3 Autoresonance

3.1.4 Stochastic resonance

3.2 Geometrical resonance analysis: Chaos, stability and control

3.2.1 Geometrical resonance in a damped pendulum subjected to periodic pulses

3.2.2 Geometrical resonance in an overdamped bistable system

3.2.3 Geometrical resonance approach to control of chaos by weak periodic perturbations

3.2.4 Geometrical resonance and globally stable limit cycle in the van der Pol oscillator

3.2.5 Geometrical resonance in spatio-temporal systems

3.3 Notes and references

4 Applications: Low-dimensional systems

4.1 Control of chaotic escape from a potential well

4.1.1 Model equations

4.1.2 Escape suppression theorems

4.1.3 Inhibition of the erosion of non-escaping basins

4.1.4 Role of nonlinear dissipation

4.1.5 Robustness of chaotic escape control

4.1.6 Case of incommensurate escape-suppressing excitations

4.2 Taming chaos in a driven Josephson junction

4.2.1 Model equation

4.2.2 Suppression of homoclinic bifurcations

4.2.3 Comparison with Lyapunov exponent calculations

4.3 Suppression of chaos of charged particles in an electrostatic wave packet

4.3.1 The three wave case

4.3.2 Case of a general electrostatic wave packet

4.4 Notes and references

5 Applications: High-dimensional systems

5.1 Controlling chaos in chaotic coupled oscillators

5.1.1 Localized control of spatio-temporal chaos

5.1.2 Application to chaotic solitons in Frenkel-Kontorova chains

5.2 Controlling chaos in partial differential equations

5.2.1 Damped sine-Gordon equation additively driven by two spatio-temporal periodic fields
CONTENTS

5.2.2 Damped sine-Gordon equation additively and parametrically driven by two spatio-temporal periodic fields 195
5.2.3 Damped sine-Gordon equation additively driven by two temporal periodic excitations ... 198
5.2.4 Nonlinear Schrödinger equation subjected to dissipative and spatially periodic perturbations .. 202
5.2.5 ϕ^4 model additively driven by two spatio-temporal periodic fields ... 204
5.2.6 ϕ^4 model additively and parametrically driven by two spatio-temporal periodic fields .. 207
5.3 Notes and references ... 210

6 Further Remarks and Open Problems .. 213
6.1 Open problems ... 213
 6.1.1 Beyond the main resonance ... 213
 6.1.2 Reshaping-induced control ... 214
 6.1.3 Amplitude modulation control ... 214
6.2 Further applications .. 216
 6.2.1 Ratchet systems .. 216
 6.2.2 Coupled Bose-Einstein condensates ... 218
6.3 Notes and references .. 219